It seems that @tillsten has already answered your question, but here are a few additional confirmations. The first graph is your data (zero average value, and I changed it to csv). The second is the power spectral density, and you can see the fat mass with a peak at ~ 0.3 Hz. I enlarged the image in the third section to see if the second latent frequency was close to the fundamental frequency.
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import signal x = pd.read_csv("signal.csv") x = np.array(x, dtype=float)[:,0] x = x - np.mean(x) fs = 1e2 f, Pxx = signal.welch(x, fs, nperseg=1024) f_res, Pxx_res = signal.welch(x, fs, nperseg=2048) plt.subplot(3,1,1) plt.plot(x) plt.subplot(3,1,2) plt.plot(f, Pxx) plt.xlim([0, 1]) plt.xlabel('frequency [Hz]') plt.ylabel('PSD') plt.subplot(3,1,3) plt.plot(f_res, Pxx_res) plt.xlim([0, 1]) plt.xlabel('frequency [Hz]') plt.ylabel('PSD') plt.show() Hn = fft.fft(x) freqs = fft.fftfreq(len(Hn), 1/fs) idx = np.argmax(np.abs(Hn)) freq_in_hertz = freqs[idx] print 'Main freq:', freq_in_hertz print 'RMS amp:', np.sqrt(Pxx.max())
Fingerprints:
Main freq: 0.32012805122 RMS amp: 0.0556044913489

Scott source share