PowerSet<Pack<Types...>>::type is a package consisting of packages formed by all subsets of Types... (now suppose the static statement that each type from Types... different). For instance,
PowerSet<Pack<int, char, double>>::type
should be
Pack<Pack<>, Pack<int>, Pack<char>, Pack<double>, Pack<int, char>, Pack<int, double>, Pack<char, double>, Pack<int, char, double>>
Now I have solved this exercise and tested it, but my decision is very long and I would like to hear more elegant ideas. I do not ask anyone to look at my solution, but I propose a new method as a whole, perhaps to outline my idea with some pseudocode.
If you would like to know, this is what I did: firstly, I recalled from high school that a set of N elements has 2 ^ N subsets. Each subset corresponds to an N-bit binary number, for example. 001010 ... 01 (N digits), where 0 means that the element is in a subset, and 1 means that the element is not in the subset. Thus, 000 ... 0 will represent an empty subset, and 111 ... 1 will represent the entire set. Thus, using the (template) sequence 0,1,2,3, ... 2 ^ N-1, I formed 2 ^ N index_sequence, each of which corresponds to the binary representation of integers in this sequence, for example. index_sequence <1,1,0,1> will correspond to 13 of this sequence. Then, each of these 2 ^ N index_sequence will be converted to the required 2 ^ N subsets of Pack<Types...> .
My solution below is quite long, and I know that there is a more elegant method than the one described above. If you thought of a better plan (perhaps shorter because it is more recursive or some other), please post your idea so that I can accept your better plan, hoping to write a shorter solution. I do not expect you to write your decision completely if you think it will probably take some time (if you do not want to). But at present, I cannot think of anything other than what I did. Here is my current long solution if you want to read it:
#include <iostream> #include <cmath> #include <typeinfo> // SubsetFromBinaryDigits<P<Types...>, Is...>::type gives the sub-pack of P<Types...> where 1 takes the type and 0 does not take the type. The size of the two packs must be the same. // For example, SubsetFromBinaryDigits<Pack<int, double, char>, 1,0,1>::type gives Pack<int, char>. template <typename, typename, int...> struct SubsetFromBinaryDigitsHelper; template <template <typename...> class P, typename... Accumulated, int... Is> struct SubsetFromBinaryDigitsHelper<P<>, P<Accumulated...>, Is...> { using type = P<Accumulated...>; }; template <template <typename...> class P, typename First, typename... Rest, typename... Accumulated, int FirstInt, int... RestInt> struct SubsetFromBinaryDigitsHelper<P<First, Rest...>, P<Accumulated...>, FirstInt, RestInt...> : std::conditional<FirstInt == 0, SubsetFromBinaryDigitsHelper<P<Rest...>, P<Accumulated...>, RestInt...>, SubsetFromBinaryDigitsHelper<P<Rest...>, P<Accumulated..., First>, RestInt...> >::type {}; template <typename, int...> struct SubsetFromBinaryDigits; template <template <typename...> class P, typename... Types, int... Is> struct SubsetFromBinaryDigits<P<Types...>, Is...> : SubsetFromBinaryDigitsHelper<P<Types...>, P<>, Is...> {}; // struct NSubsets<P<Types...>, IntPacks...>::type is a pack of packs, with each inner pack being the subset formed by the IntPacks. // For example, NSubsets< Pack<int, char, long, Object, float, double, Blob, short>, index_sequence<0,1,1,0,1,0,1,1>, index_sequence<0,1,1,0,1,0,1,0>, index_sequence<1,1,1,0,1,0,1,0> >::type will give // Pack< Pack<char, long, float, Blob, short>, Pack<char, long, float, Blob>, Pack<int, char, long, float, Blob> > template <typename, typename, typename...> struct NSubsetsHelper; template <template <typename...> class P, typename... Types, typename... Accumulated> struct NSubsetsHelper<P<Types...>, P<Accumulated...>> { using type = P<Accumulated...>; }; template <template <typename...> class P, typename... Types, typename... Accumulated, template <int...> class Z, int... Is, typename... Rest> struct NSubsetsHelper<P<Types...>, P<Accumulated...>, Z<Is...>, Rest...> : NSubsetsHelper<P<Types...>, P<Accumulated..., typename SubsetFromBinaryDigits<P<Types...>, Is...>::type>, Rest...> {}; template <typename, typename...> struct NSubsets; template <template <typename...> class P, typename... Types, typename... IntPacks> struct NSubsets<P<Types...>, IntPacks...> : NSubsetsHelper<P<Types...>, P<>, IntPacks...> {}; // Now, given a pack with N types, we transform index_sequence<0,1,2,...,2^N> to a pack of 2^N index_sequence packs, with the 0 and 1 of each // index_sequence pack forming the binary representation of the integer. For example, if N = 2, then we have // Pack<index_sequence<0,0>, index_sequence<0,1>, index_sequence<1,0>, index_sequence<1,1>>. From these, we can get the // power set, ie the set of all subsets of the original pack. template <int N, int Exponent, int PowerOfTwo> struct LargestPowerOfTwoUpToHelper { using type = typename std::conditional<(PowerOfTwo > N), std::integral_constant<int, Exponent>, LargestPowerOfTwoUpToHelper<N, Exponent + 1, 2 * PowerOfTwo> >::type; static const int value = type::value; }; template <int N> struct LargestPowerOfTwoUpTo : std::integral_constant<int, LargestPowerOfTwoUpToHelper<N, -1, 1>::value> {}; constexpr int power (int base, int exponent) { return std::pow (base, exponent); } template <int...> struct index_sequence {}; // For example, PreBinaryIndexSequence<13>::type is to be index_sequence<0,2,3>, since 13 = 2^3 + 2^2 + 2^0. template <int N, int... Accumulated> struct PreBinaryIndexSequence { // Could use another helper, since LargestPowerOfTwoUpToHelper<N, -1, 1>::value is being used twice. using type = typename PreBinaryIndexSequence<N - power(2, LargestPowerOfTwoUpToHelper<N, -1, 1>::value), LargestPowerOfTwoUpToHelper<N, -1, 1>::value, Accumulated...>::type; }; template <int... Accumulated> struct PreBinaryIndexSequence<0, Accumulated...> { using type = index_sequence<Accumulated...>; }; // For example, BinaryIndexSequenceHelper<index_sequence<>, index_sequence<0,2,3>, 0, 7>::type is to be index_sequence<1,0,1,1,0,0,0,0> (the first index with position 0, and the last index is position 7). template <typename, typename, int, int> struct BinaryIndexSequenceHelper; template <template <int...> class Z, int... Accumulated, int First, int... Rest, int Count, int MaxCount> struct BinaryIndexSequenceHelper<Z<Accumulated...>, Z<First, Rest...>, Count, MaxCount> : std::conditional<First == Count, BinaryIndexSequenceHelper<Z<Accumulated..., 1>, Z<Rest...>, Count + 1, MaxCount>, BinaryIndexSequenceHelper<Z<Accumulated..., 0>, Z<First, Rest...>, Count + 1, MaxCount> >::type {}; // When the input pack is emptied, but Count is still less than MaxCount, fill the rest of the acccumator pack with 0's. template <template <int...> class Z, int... Accumulated, int Count, int MaxCount> struct BinaryIndexSequenceHelper<Z<Accumulated...>, Z<>, Count, MaxCount> : BinaryIndexSequenceHelper<Z<Accumulated..., 0>, Z<>, Count + 1, MaxCount> {}; template <template <int...> class Z, int... Accumulated, int MaxCount> struct BinaryIndexSequenceHelper<Z<Accumulated...>, Z<>, MaxCount, MaxCount> { using type = Z<Accumulated...>; }; // At last, BinaryIndexSequence<N> is the binary representation of N using index_sequence, eg BinaryIndexSequence<13,7> is index_sequence<1,0,1,1,0,0,0>. template <int N, int NumDigits> using BinaryIndexSequence = typename BinaryIndexSequenceHelper<index_sequence<>, typename PreBinaryIndexSequence<N>::type, 0, NumDigits>::type; // Now define make_index_sequence<N> to be index_sequence<0,1,2,...,N-1>. template <int N, int... Is> struct make_index_sequence_helper : make_index_sequence_helper<N-1, N-1, Is...> {}; // make_index_sequence_helper<N-1, N-1, Is...> is derived from make_index_sequence_helper<N-2, N-2, N-1, Is...>, which is derived from make_index_sequence_helper<N-3, N-3, N-2, N-1, Is...>, which is derived from ... which is derived from make_index_sequence_helper<0, 0, 1, 2, ..., N-2, N-1, Is...> template <int... Is> struct make_index_sequence_helper<0, Is...> { using type = index_sequence<Is...>; }; template <int N> using make_index_sequence = typename make_index_sequence_helper<N>::type; // Finally, ready to define PowerSet itself. template <typename, typename> struct PowerSetHelper; template <template <typename...> class P, typename... Types, template <int...> class Z, int... Is> struct PowerSetHelper<P<Types...>, Z<Is...>> : NSubsets< P<Types...>, BinaryIndexSequence<Is, sizeof...(Types)>... > {}; template <typename> struct PowerSet; template <template <typename...> class P, typename... Types> struct PowerSet<P<Types...>> : PowerSetHelper<P<Types...>, make_index_sequence<power(2, sizeof...(Types))>> {}; // ----------------------------------------------------------------------------------------------------------------------------------------------- // Testing template <typename...> struct Pack {}; template <typename Last> struct Pack<Last> { static void print() {std::cout << typeid(Last).name() << std::endl;} }; template <typename First, typename ... Rest> struct Pack<First, Rest...> { static void print() {std::cout << typeid(First).name() << ' '; Pack<Rest...>::print();} }; template <int Last> struct index_sequence<Last> { static void print() {std::cout << Last << std::endl;} }; template <int First, int ... Rest> struct index_sequence<First, Rest...> { static void print() {std::cout << First << ' '; index_sequence<Rest...>::print();} }; int main() { PowerSet<Pack<int, char, double>>::type powerSet; powerSet.print(); }