Your source code can be accelerated by remembering the intermediate sin , i.e.
def ct_dynamic(r, alpha): """alpha: the n-2 values between [0,\pi) and last one between [0,2\pi) """ x = np.zeros(len(alpha) + 1) s = 1 for e, a in enumerate(alpha): x[e] = s*np.cos(a) s *= np.sin(a) x[len(alpha)] = s return x*r
But still losing speed until numpy based approach
def ct(r, arr): a = np.concatenate((np.array([2*np.pi]), arr)) si = np.sin(a) si[0] = 1 si = np.cumprod(si) co = np.cos(a) co = np.roll(co, -1) return si*co*r >>> n = 10 >>> c = np.random.random_sample(n)*np.pi >>> all(ct(1,c) == ct_dynamic(1,c)) True >>> timeit.timeit('from __main__ import coord_transform_n as f, c; f(2.4,c)', number=10000) 2.213547945022583 >>> timeit.timeit('from __main__ import ct_dynamic as f, c; f(2.4,c)', number=10000) 0.9227950572967529 >>> timeit.timeit('from __main__ import ct as f, c; f(2.4,c)', number=10000) 0.5197498798370361
source share