In my ongoing effort to learn about scala, I am working on Odersky's “Example Scala” and in the chapter on first-class functions, the section on anonymous functions avoids the situation of a recursive anonymous function. I have a solution that seems to work. I am curious if there is a better answer.
From pdf: Code for displaying higher-order functions
def sum(f: Int => Int, a: Int, b: Int): Int = if (a > b) 0 else f(a) + sum(f, a + 1, b) def id(x: Int): Int = x def square(x: Int): Int = x * x def powerOfTwo(x: Int): Int = if (x == 0) 1 else 2 * powerOfTwo(x-1) def sumInts(a: Int, b: Int): Int = sum(id, a, b) def sumSquares(a: Int, b: Int): Int = sum(square, a, b) def sumPowersOfTwo(a: Int, b: Int): Int = sum(powerOfTwo, a, b) scala> sumPowersOfTwo(2,3) res0: Int = 12
from pdf: Code for anonymous functions
def sum(f: Int => Int, a: Int, b: Int): Int = if (a > b) 0 else f(a) + sum(f, a + 1, b) def sumInts(a: Int, b: Int): Int = sum((x: Int) => x, a, b) def sumSquares(a: Int, b: Int): Int = sum((x: Int) => x * x, a, b) // no sumPowersOfTwo
My code is:
def sumPowersOfTwo(a: Int, b: Int): Int = sum((x: Int) => { def f(y:Int):Int = if (y==0) 1 else 2 * f(y-1); f(x) }, a, b) scala> sumPowersOfTwo(2,3) res0: Int = 12