In the RSA encryption algorithm, how would I calculate c^d mod nwhen cand dare large numbers?
c^d mod n
c
d
GMP is a C / C ++ software library that does this for you: mpz_powm, mpz_powm_ui in the documentation. The method used (mostly) is explained in the wikipedia page , and you can try reading the GMP source code if you guess it ...
Operation "powMod" can be reduced by a smaller step.
5 ^ 3 % 6 ((5 * 5) % 6) * 5 % 6, 5 ^ 4 % 6 (((5 * 5) % 6) * 5 % 6) * 5 % 6). , modulo , , , c ^ d % n, c d .
5 ^ 3 % 6
((5 * 5) % 6) * 5 % 6
5 ^ 4 % 6
(((5 * 5) % 6) * 5 % 6) * 5 % 6)
c ^ d % n
: http://en.wikipedia.org/wiki/Modular_exponentiation
: / , " " . Java java.lang.BigInteger, modPow().
java.lang.BigInteger
modPow()
" ", (, "32- ", , , 32- ), " " , ( 14).
Source: https://habr.com/ru/post/1795798/More articles:Many rails Models with the same flag. What is the best practice? - ruby-on-railsКак указать экземпляр Enum по умолчанию для Guice? - javaReceive SPI data through DMA on PIC32 - cПроблемы, вызванные пробелами в поле и именами управления - ms-accessXAML Binding Groups - c #How to handle multiple Authenticator - androidDoes anyone know about a SaaS billing and authentication service? - authenticationWriting to a file does not work - objective-cCan you defer statusCode in jquery 1.5? - jqueryХранение файлов на сервере в каталоге, не доступном для общего доступа - phpAll Articles