Check out numerical recipes, chapter 6.2.2. Approximation is standard. Recall that
NormCdf(x) = 0.5 * (1 + erf(x / sqrt(2)))
erf(x) = 2 / (sqrt(pi)) integral(e^(-t^2) dt, t = 0..x)
and write erf as
1 - erf x ~= t * exp(-x^2 + P(t))
for positive x, where
t = 2 / (2 + x)
t 0 1, P ( , 5.8), : , , . L ^ 2 norm, (= sup).
.
1 - erf x = t * exp(-x^2) * P(t)
, normCdf , erf.
"", , , , b*exp(-a*z^2)*y(t), . erfc (x), (1978) [http://www.ams.org/journals/mcom/1978-32-144/S0025-5718-1978-0494846-8/S0025-5718-1978-0494846-8.pdf]
Numerical Recipes 3- 6.2.2 C t*exp(-z^2 + c0 + c1*t+ c2t^2 + c3*t^3 + ... + c9t^9)