, .
f[t_] := {(a + b) Cos[t] - h Cos[(a + b)/b t], (a + b) Sin[t] -
h Sin[(a + b)/b t]}
1:
Module[{a = 2, b = 1, h = 1},
ParametricPlot[f[t], {t, 0, 2 \[Pi]}, PlotRange -> All]]
2:
Module[{a = 2, b = 1, h = 1},
ParametricPlot[Evaluate[f[t]], {t, 0, 2 \[Pi]}, PlotRange -> All]]
( 3)
ParametricPlot[
Module[{a = 2, b = 1, h = 1}, Evaluate[f[t]]], {t, 0, 2 \[Pi]},
PlotRange -> All]
( 4)
Module[{a = 2, b = 1, h = 1},
ParametricPlot[{(a + b) Cos[t] - h Cos[(a + b)/b t], (a + b) Sin[t] - h Sin[(a + b)/b t]},
{t, 0, 2 \[Pi]},
PlotRange -> All]]
- , 4, 2 ? ( , ).
, :
ParametricPlot[
Evaluate[{(a + b) Cos[t] - h Cos[(a + b)/b t], (a + b) Sin[t] -
h Sin[(a + b)/b t]}] /. {a -> 2, b -> 1, h -> 1}, {t, 0,
2 \[Pi]}, PlotRange -> All]
f[x_] := (a x)/(b + x);
With[{a = 10, b = 100}, Plot[Evaluate[f[x]], {x, 0, 100}]]
With[{a = 10, b = 100}, Plot[(a x)/(b + x), {x, 0, 100}]]
Plot[With[{a = 10, b = 100}, Evaluate[f[x]]], {x, 0, 100}]
Plot[Evaluate[f[x]] /. {a -> 10, b -> 100}, {x, 0, 100}]
1 (Edit) ( "Plot" x , "Block"?)
, , -, Mathematica, 2, Mathematica. , . , 1 3 ( 4, , .)