If Vis an admissible covariance matrix Gaussian, then it is symmetric positive definite and, therefore, defines a real scalar product. By the way, also inv(V).
, , M p -, :
d1 = sqrt((M-p)'*V*(M-p));
d2 = sqrt((M-p)'*inv(V)*(M-p));
Matlab d2 (, ):
d2 = sqrt((M-p)'*(V\(M-p)));
, V - , d1==d2 . , d1 d2, (, ). 1D-, - 1D ( ).
NB: / V (.. ).
, .
.