I use the Levenberg-Marquard algorithm to minimize a non-linear function of 6 parameters. I have about 50 data points for each minimization, but I don't get accurate enough results. Could it be so significant that my parameters differ from each other by several orders of magnitude? If so, where should I look for a solution? If not, what LMA limitations have you encountered in your work (this may help find other problems with my application)? Many thanks for your help.
Edit: The problem I'm trying to solve is to determine the best T conversion:
typedef struct
{
double x_translation, y_translation, z_translation;
double x_rotation, y_rotation, z_rotation;
} transform_3D;
to match a set of three-dimensional points for a group of three-dimensional lines. In detail, I have a set of coordinates of three-dimensional points and the equations of the corresponding three-dimensional lines that should pass through these points (in an ideal situation). LMA minimizes the summation of the distances of inverted 3D points to the corresponding three-dimensional lines. The conversion function is as follows:
cv::Point3d Geometry::transformation_3D(cv::Point3d point, transform_3D transformation)
{
cv::Point3d p_odd,p_even;
p_odd.x=point.x;
p_odd.y=point.y*cos(transformation.x_rotation)-point.z*sin(transformation.x_rotation);
p_odd.z=point.y*sin(transformation.x_rotation)+point.z*cos(transformation.x_rotation);
p_even.x=p_odd.z*sin(transformation.y_rotation)+p_odd.x*cos(transformation.y_rotation);
p_even.y=p_odd.y;
p_even.z=p_odd.z*cos(transformation.y_rotation)-p_odd.x*sin(transformation.y_rotation);
p_odd.x=p_even.x*cos(transformation.z_rotation)-p_even.y*sin(transformation.z_rotation);
p_odd.y=p_even.x*sin(transformation.z_rotation)+p_even.y*cos(transformation.z_rotation);
p_odd.z=p_even.z;
p_even.x=p_odd.x+transformation.x_translation;
p_even.y=p_odd.y+transformation.y_translation;
p_even.z=p_odd.z+transformation.z_translation;
return p_even;
}
Hope this explanation helps a bit ...
Edit2:
The following are some sample data. 3D lines are described by a center point and a direction vector. The center point for all lines (0,0,0) and the coordinate "uz" for each vector is 1. The set of 'ux' coordinates of the directional vectors:
-1.0986, -1.0986, -1.0986,
-1.0986, -1.0990, -1.0986,
-1.0986, -1.0986, -0.9995,
-0.9996, -0.9996, -0.9995,
-0.9995, -0.9995, -0.9996,
-0.9003, -0.9003, -0.9004,
-0.9003, -0.9003, -0.9003,
-0.9003, -0.9003, -0.8011,
-0.7020, -0.7019, -0.6028,
-0.5035, -0.5037, -0.4045,
-0.3052, -0.3053, -0.2062,
-0.1069, -0.1069, -0.1075,
-0.1070, -0.1070, -0.1069,
-0.1069, -0.1070, -0.0079,
-0.0079, -0.0079, -0.0078,
-0.0078, -0.0079, -0.0079,
0.0914, 0.0914, 0.0913,
0.0913, 0.0914, 0.0915,
0.0914, 0.0914
The set of coordinates "uy" directional vectors:
-0.2032, -0.0047, 0.1936,
0.3919, 0.5901, 0.7885,
0.9869, 1.1852, -0.1040,
0.0944, 0.2927, 0.4911,
0.6894, 0.8877, 1.0860,
-0.2032, -0.0047, 0.1936,
0.3919, 0.5902, 0.7885,
0.9869, 1.1852, 1.0860,
0.9869, 1.1852, 1.0861,
0.9865, 1.1853, 1.0860,
0.9870, 1.1852, 1.0861,
-0.2032, -0.0047, 0.1937,
0.3919, 0.5902, 0.7885,
0.9869, 1.1852, -0.1039,
0.0944, 0.2927, 0.4911,
0.6894, 0.8877, 1.0860,
-0.2032, -0.0047, 0.1935,
0.3919, 0.5902, 0.7885,
0.9869, 1.1852
and the set of three-dimensional points in (x, y, z, x, y, x, y, z ....) form:
{{0, 0, 0}, {0, 16, 0}, {0, 32, 0},
{0, 48, 0}, {0, 64, 0}, {0, 80, 0},
{0, 96, 0}, {0, 112,0}, {8, 8, 0},
{8, 24, 0}, {8, 40, 0}, {8, 56, 0},
{8, 72, 0}, {8, 88, 0}, {8, 104, 0},
{16, 0, 0}, {16, 16,0}, {16, 32, 0},
{16, 48, 0}, {16, 64, 0}, {16, 80, 0},
{16, 96, 0}, {16, 112, 0}, {24, 104, 0},
{32, 96, 0}, {32, 112, 0}, {40, 104, 0},
{48, 96, 0}, {48, 112, 0}, {56, 104, 0},
{64, 96, 0}, {64, 112, 0}, {72, 104, 0},
{80, 0, 0}, {80, 16, 0}, {80, 32, 0},
{80,48, 0}, {80, 64, 0}, {80, 80, 0},
{80, 96, 0}, {80, 112, 0}, {88, 8, 0},
{88, 24, 0}, {88, 40, 0}, {88, 56, 0},
{88, 72, 0}, {88, 88, 0}, {88, 104, 0},
{96, 0, 0}, {96, 16, 0}, {96, 32, 0},
{96, 48,0}, {96, 64, 0}, {96, 80, 0},
{96, 96, 0}, {96, 112, 0}}
"" .