In Parallel Python, why do you need to wrap all the modules, the transferred function will be needed along with the variables and namespaces in the job sending call - how much it is necessary to save the global variables of the module level? (if all this happens)
send function:
submit(self, func, args=(), depfuncs=(), modules=(), callback=None, callbackargs=(),group='default', globals=None)
Submits function to the execution queue
func - function to be executed
args - tuple with arguments of the 'func'
depfuncs - tuple with functions which might be called from 'func'
modules - tuple with module names to import
callback - callback function which will be called with argument
list equal to callbackargs+(result,)
as soon as calculation is done
callbackargs - additional arguments for callback function
group - job group, is used when wait(group) is called to wait for
jobs in a given group to finish
globals - dictionary from which all modules, functions and classes
will be imported, for instance: globals=globals()
source
share