Python / matplotlib - scaling with two axis parasites

An attempt to build a spectrum, i.e. speed depending on intensity, with a smaller axis x = speed, on the upper double axis = frequency

Relations between them (Doppler expression formula)

f = (1-v/c)*f_0 

where f is the resulting frequency, v is the speed, c is the speed of light, f_0 is the frequency at v = 0, i.e. v_lsr.

I tried to solve it by looking at http://matplotlib.sourceforge.net/examples/axes_grid/parasite_simple2.html where it is being solved

pm_to_kms = 1./206265.*2300*3.085e18/3.15e7/1.e5
aux_trans = matplotlib.transforms.Affine2D().scale(pm_to_kms, 1.)
ax_pm = ax_kms.twin(aux_trans)
ax_pm.set_viewlim_mode("transform")

My problem is how to replace pm_to_kms with my function by frequency?

Does anyone know how to solve this?

+3
source share
2 answers

The solution I ended up with was:

ax_hz = ax_kms.twiny()
x_1, x_2 = ax_kms.get_xlim()
# i want the frequency in GHz so, divide by 1e9
ax_hz.set_xlim(calc_frequency(x_1,data.restfreq/1e9),calc_frequency(x_2,data.restfreq/1e9))

.

EDIT: . EDIT2: @u55

/. - AstroPy Units .

from matplotlib import transforms as mtransforms
import astropy.constants as co
import astropy.units as un
import numpy as np 
import matplotlib.pyplot as plt 
plt.style.use('ggplot')
from mpl_toolkits.axes_grid.parasite_axes import SubplotHost 


class Freq2WavelengthTransform(mtransforms.Transform): 
    input_dims = 1 
    output_dims = 1 
    is_separable = False 
    has_inverse = True 

    def __init__(self):
        mtransforms.Transform.__init__(self)

    def transform_non_affine(self, fr): 
        return (fr*un.GHz).to(un.mm, equivalencies=un.spectral()).value 

    def inverted(self): 
        return Wavelength2FreqTransform() 

class Wavelength2FreqTransform(Freq2WavelengthTransform): 
    input_dims = 1 
    output_dims = 1 
    is_separable = False 
    has_inverse = True 

    def __init__(self):
        mtransforms.Transform.__init__(self)

    def transform_non_affine(self, wl): 
        return (wl*un.mm).to(un.GHz, equivalencies=un.spectral()).value 

    def inverted(self): 
        return Freq2WavelengthTransform() 



aux_trans = mtransforms.BlendedGenericTransform(Wavelength2FreqTransform(), mtransforms.IdentityTransform()) 

fig = plt.figure(2) 

ax_GHz = SubplotHost(fig, 1,1,1) 
fig.add_subplot(ax_GHz) 
ax_GHz.set_xlabel("Frequency (GHz)") 


xvals = np.arange(199.9, 999.9, 0.1) 

# data, noise + Gaussian (spectral) lines
data = np.random.randn(len(xvals))*0.01 + np.exp(-(xvals-300.)**2/100.)*0.5 + np.exp(-(xvals-600.)**2/400.)*0.5

ax_mm = ax_GHz.twin(aux_trans) 
ax_mm.set_xlabel('Wavelength (mm)') 
ax_mm.set_viewlim_mode("transform") 
ax_mm.axis["right"].toggle(ticklabels=False) 

ax_GHz.plot(xvals, data) 
ax_GHz.set_xlim(200, 1000) 

plt.draw() 
plt.show() 

: enter image description here

+5

" " - " " ( ). pm_to_kms .

0

Source: https://habr.com/ru/post/1752442/


All Articles