Creating lines around a guideline using Miterjoin

I draw graphics in PictureForms WinForms. Now I am looking for the opportunity to "duplicate" a row (an array of points), so that the two resulting rows are located at some fixed distance from the original. Like in this picture, I have a red line and you want to get black:

Image lines http://img227.imageshack.us/img227/2341/linesb.png

I was thinking of just moving the line a few pixels up / right / up-right, but this leads to weird overlapping lines.

Is there any other approach that does what I want? Any ideas are greatly appreciated. Thank!

+3
source share
1 answer

, , , . python PyQt. , . #.

Update:

-- python (, :)). , #. , 20 , width = 40 num = 2. ( ), ​​ ().

public PointF[][] MultiplyLine(PointF[] line, int width, int num)
{
    if (num == 1) return new PointF[][] { line };
    if (num < 1) throw new ArgumentOutOfRangeException();
    if (line.Length < 2) return Enumerable.Range(0, num)
                  .Select(x => line).ToArray();

    Func<float, float, PointF> normVec = (x, y) => {
        float len = (float)Math.Sqrt((double)(x * x + y * y));
        return len == 0 ? new PointF(1f, 0f) : new PointF(x / len, y / len);
    };

    PointF[][] newLines = Enumerable.Range(0, num)
                  .Select(x => new PointF[line.Length]).ToArray();

    float numinv = 1f / (float)(num - 1), cor = 0f;
    PointF vec1 = PointF.Empty, vec2 = PointF.Empty, vec3 = PointF.Empty;

    int j = -1, i = -1;
    foreach (PointF p in line)
    {
        bool first = j == -1, last = j == line.Length - 2; j++;

        if (!last)
            vec1 = normVec(line[j + 1].Y - p.Y, -line[j + 1].X + p.X);
        if (!first)
            vec2 = normVec(-line[j - 1].Y + p.Y, line[j - 1].X - p.X);
        if (!first && !last)
        {
            vec3 = normVec(vec1.X + vec2.X, vec1.Y + vec2.Y);
            cor = (float)Math.Sin((Math.PI - 
                  Math.Acos(vec1.X * vec2.X + vec1.Y * vec2.Y)) / 2);
            cor = cor == 0 ? 1 : cor;
            vec3 = new PointF(vec3.X / cor, vec3.Y / cor);
        }

        i = -1;
        foreach (PointF[] newLine in newLines)
        {
            i++; cor = (float)width * ((float)i * numinv - 0.5f);
            vec1 = first ? vec1 : last ? vec2 : vec3;
            newLine[j] = new PointF(vec1.X * cor + p.X, vec1.Y * cor + p.Y);
        }
    }

    return newLines;
}

, ( , PyQt):

PointF[] pts = new PointF[] { 
    new PointF(100f, 100f), new PointF(300f, 200f), 
    new PointF(500f, 200f), new PointF(300f, 500f), 
    new PointF(600f, 450f), new PointF(650f, 180f), 
    new PointF(800f, 180f), new PointF(800f, 500f), 
    new PointF(200f, 700f)
};

pictureBox1.Image = new Bitmap(pictureBox1.Width, pictureBox1.Height);
using(Graphics g = Graphics.FromImage(pictureBox1.Image)){
    g.DrawLines(new Pen(Color.Red), pts);

    foreach (PointF[] line in MultiplyLine(pts, 80, 14))
        g.DrawLines(new Pen(Color.Black), line);
}

:

http://img41.imageshack.us/img41/8606/lines2.th.png

+2

Source: https://habr.com/ru/post/1741862/


All Articles