Perfectly disable workflows

I don’t understand why in this implementation stoppednot volatile- If another thread updates this, will it display correctly?

Secondly, is testing ( !Stopping) atomic?

using System;
using System.Threading;

/// <summary>
/// Skeleton for a worker thread. Another thread would typically set up
/// an instance with some work to do, and invoke the Run method (eg with
/// new Thread(new ThreadStart(job.Run)).Start())
/// </summary>
public class Worker
{
    /// <summary>
    /// Lock covering stopping and stopped
    /// </summary>
    readonly object stopLock = new object();
    /// <summary>
    /// Whether or not the worker thread has been asked to stop
    /// </summary>
    bool stopping = false;
     /// <summary>
    /// Whether or not the worker thread has stopped
    /// </summary>
    bool stopped = false;

    /// <summary>
    /// Returns whether the worker thread has been asked to stop.
    /// This continues to return true even after the thread has stopped.
    /// </summary>
    public bool Stopping
    {
        get
        {
            lock (stopLock)
            {
                return stopping;
            }
        }
    }

    /// <summary>
    /// Returns whether the worker thread has stopped.
    /// </summary>
    public bool Stopped
    {
        get
        {
            lock (stopLock)
            {
                return stopped;
            }
        }
    }

    /// <summary>
    /// Tells the worker thread to stop, typically after completing its 
    /// current work item. (The thread is *not* guaranteed to have stopped
    /// by the time this method returns.)
    /// </summary>
    public void Stop()
    {
        lock (stopLock)
        {
            stopping = true;
        }
    }

    /// <summary>
    /// Called by the worker thread to indicate when it has stopped.
    /// </summary>
    void SetStopped()
    {
        lock (stopLock)
        {
            stopped = true;
        }
    }

    /// <summary>
    /// Main work loop of the class.
    /// </summary>
    public void Run()
    {
        try
        {
            while (!Stopping)
            {
                // Insert work here. Make sure it doesn't tight loop!
                // (If work is arriving periodically, use a queue and Monitor.Wait,
                // changing the Stop method to pulse the monitor as well as setting
                // stopping.)

                // Note that you may also wish to break out *within* the loop
                // if work items can take a very long time but have points at which
                // it makes sense to check whether or not you've been asked to stop.
                // Do this with just:
                // if (Stopping)
                // {
                //     return;
                // }
                // The finally block will make sure that the stopped flag is set.
            }
        }
        finally
        {
            SetStopped();
        }
    }
}

change

This code is from an article written by John Skeet .

+3
source share
3 answers

Because it is accessible only inside lock. A lockalso ensures that you see updated values.

Re ( , ?); ; Stopping , , , lock, . , !Stopping , Stopping. , , , , . , , , : , , .

+6

3.10 #:

# , . , , . , , (§10.5.3), (§8.12), .

, , volatile.

JIT - , , Monitor.Enter() Exit(). , , , try, Enter(). .

+2

See this entry in SO format . This explains why blocking is preferred over volatiles.

+1
source

Source: https://habr.com/ru/post/1726051/


All Articles