Thus, z -1 means a single delay.
Take H p = (1-p) / (1-pz -1 ).
If we follow the convention "x" for input and "y" for output, the transfer function is H = y / x (= output / input)
then we get y / x = (1-p) / (1-pz -1 )
or (1-p) x = (1-pz -1 ) y
(1-p) x [n] = y [n] - py [n-1]
: y [n] = py [n-1] + (1-p) x [n]
C
y += (1-p)*(x-y);
- , , "y" . :
y_delayed_1 = y;
y = p*y_delayed_1 + (1-p)*x;
, , , H & Beta;= 1-z - 1 1-z -2. ( N?)
, , .
H = H0 * (1 + az -1 + bz -2 + cz -3...)/(1+ RZ 1 + SZ -2 + TZ -3...)
, , H = y/x, ,
H0 * (1 + az -1 + bz -2 + cz -3...) * x = (1+ rz -1 + sz -2 + tz -3...) * y
"y" , "y" .
( a, b, c ..) , , .