I would think about building a solution one step at a time, inductively:
: 1c, 5c, 10c, 25c ( )
- 1c = 1 X 1c. 4 1c , .
- 5 5 c. 4c, 1 9.
- 10 1 X 10c. , 1 19.
- 20c 2 x 10c, 20 10.
, .
EDIT:
, :
x (x - ) n (n - , , ). - . :
1 {1c} 1 1c
2 {1c, 10c} i.e 2 1c 10c
3 {1c, 10c, 15c} .....
, .
, . ( 1 ),
cell(1, 5) == > 5c, {1c}
cell(2, 9) == > 9c {1c, 10c}
cell(3, 27) == > 27c {1c, 10c, 15c}
- cell(x, n)
Solution:
. , {1c}. 1 , cell(1, n)= {nx1c} (n 1c).
. , , () cell(2, 28) .. 28c {1c, 10c}. , 10c , . 3 (3 = 28/10 + 1)
Choice 1:
{1x10c}, ( cell(1, 18)). {1x10c, 18x1c}= 19 coins
Choice 2:
{2x10c}, - ( cell(1, 8)). {2x10c, 8x1c}= 10 coins
Choice 3:
10c, - ( cell(1, 28)). {28x1c}= 28 coins
, 2 , . . .
, cell(x, n), n/p + 1, p= x. - .
, .