I ((S K) K). ( ) . ( ), , , :
, , : I (( SK) K), ,
,
( ) , I ((SK) K), ?
, , . , , ( ), . , .
, , langauge. , "" . , . , . , .
(, , , ), extensions . , .
Csörnyei 2007: 157-158, . , .
:
, . E, F, G. .
, : . , ( , ), . , , .
:
. : K, S, I.
I , , I / term S K K, .
.
: @` '' ( arity 2). : ( ) .
. , .., . , , . , . ( ) , x, y, z...
:
, .
E F G H
(((E F) G) H).
:
- `` K E F = E '' ( K-axiom)
- `` S F G H = F H (G H) '' (S-)
- `` I E = E '' ( I-axiom)
(I) , , I /macro S K K.
- `` E = E '' ( )
- "E = F" , "F = E" ( Symmetry )
- "E = F" , "F = G", "E = G" ( Transitive)
- "E = F" , "E G = F G" ( I)
- "E = F" , "G E = G F" ( II)
. , , , , .
" I= S K K" ?
, . , , . , . , , . , ! , . -
E F = G F , E = G
: , , . , ,
`` I E = S K K E ''
E-, . ( ), :
...
, ! , .
. , . , , , , ***** *****. , . , :
- x E, F, (E x) = (F x) , E = F ( )
, : x - object, , E G metastrong > , , .
(. , , x metastrong > object x, y, z..., metastrong > E term. , .)
, ` I= S K K ''. p >
:
I x = x '' - I- [E: = x]:
" S K K x = K x ( K x )" S- [E: = K, F: = K, G: = x],
" K x ( K x) = x" K-axiom [E: = x, F: = K x],:
" S K K x = K x ( K x )" , " K x ( K x) = x" . : [E: = S K K x, F: = K x ( K x), G = x]. , : E = G. , " S K K x = x", , .:
S K K x = x ", :" x = S K K x ":
I x = x "" x = S K K x ", infer" I x = S K K x":
" I x = S K K x" : (E x) = (F x), [E: = I, F: = S K K]. , , .. "E = F" ([E: = I, F: = S K K]), " I= S K K", quod erat.Csörnyei, Zoltán (2007): Lambda-kalkulus. . : Typotex. ISBN-978-963-9664-46-3.