Multi-dimensional optimization / root search algorithm / something

I have five values: A, B, C, D, and E.

Given the restriction A + B + C + D + E = 1 and the five functions F (A), F (B), F (C), F (D), F (E), I need to solve for A from E such that that F (A) = F (B) = F (C) = F (D) = F (E).

What is the best algorithm / approach to use? I don’t care if I need to write myself, I just wanted to know where to look.

EDIT: These are non-linear functions. In addition, they cannot be characterized. Some of them can be subsequently interpolated from the data table.

+3
source share
8 answers

. , , . , .

, , .

+4

, . , , .

min k
.
A + B + C + D + E = 1
F1 (A) - k = 0
F2 (B) - k = 0
F3 (C) -k = 0
F4 (D) - k = 0
F5 (E) -k = 0

, ,

min k + mu * sum (Fi (x_i) - k) ^ 2
A + B + C + D + E = 1

SQP .

, .

+2

. , . , , :

1) A = B = C = D = E = 1/5
2) F1 (A) F5 (E) A E , , 5 (). 3) A-E , 1 F1-F5.
4) , .

- . , 5 2.

+2

A + B + C + D + E = 1
F(A) = F(B) = F(C) = F(D) = F(E)

A, B, C, D E 1/5. , , ...

(!)

, F1 (A) = F2 (B) = F3 (C) = F4 (D) = F5 (E), - (. Martijn). , E = 1 - A - B - C - D. 4x4. - , , . - , , , .

, , .

+1

Google OPTIF9 ALLUNC. .

0

, . , .

, A, B, C, D, 1-E = A + B + C + D.

-, F (A) = F (B) = F (C) = F (D), A. F (A), B, C, D . , , , A + B + C + D <= 1.

, .

0

Swarm Particle. . . Wiki .

-1

Source: https://habr.com/ru/post/1715686/


All Articles