First, move everything so that the two normal distributions (X and Z) are centered on zero; now the joint distribution will be a hill whose center is the origin.
, ( "" ). - .
, , - , . ( ), , Z. , X X . ( ), .
, .
EDIT: . ascii, .
, , sigmaX = sigmaZ = 1, :
joint probability: P(x, z) = 1/(2 pi) exp(-(x^2 + z^2)/2)
line: x = c
, , "" x x + dx:
P(x)dx = Int[z=-Inf, z=+Inf]{dz P(x, z)}
= 1/sqrt(2 pi) exp(-x^2/2) 1/sqrt(2 pi) Int[z=-Inf, z=+Inf]{dz exp(-z^2/2)}
= 1/sqrt(2 pi) exp(-x^2/2)
, () . , , , , ,
P(c>x) = Int[-Inf, c]{dx 1/sqrt(2 pi) exp(-x^2/2)}
= 1/2 (1 - Erf(c/sqrt(2)))