I need to write a program to solve the square, returning the result of a complex number.
So far, I got the definition of a complex number by declaring it to be part of num, so it's possible that +, - and * - ing.
I also defined the data type for the quadratic equation, but im now fixated on the actual quadratic solution. My math is pretty poor, so any help would be greatly appreciated ...
data Complex = C {
re :: Float,
im :: Float
} deriving Eq
-- Display complex numbers in the normal way
instance Show Complex where
show (C r i)
| i == 0 = show r
| r == 0 = show i++"i"
| r < 0 && i < 0 = show r ++ " - "++ show (C 0 (i*(-1)))
| r < 0 && i > 0 = show r ++ " + "++ show (C 0 i)
| r > 0 && i < 0 = show r ++ " - "++ show (C 0 (i*(-1)))
| r > 0 && i > 0 = show r ++ " + "++ show (C 0 i)
-- Define algebraic operations on complex numbers
instance Num Complex where
fromInteger n = C (fromInteger n) 0 -- tech reasons
(C a b) + (C x y) = C (a+x) (b+y)
(C a b) * (C x y) = C (a*x - b*y) (b*x + b*y)
negate (C a b) = C (-a) (-b)
instance Fractional Complex where
fromRational r = C (fromRational r) 0 -- tech reasons
recip (C a b) = C (a/((a^2)+(b^2))) (b/((a^2)+(b^2)))
root :: Complex -> Complex
root (C x y)
| y == 0 && x == 0 = C 0 0
| y == 0 && x > 0 = C (sqrt ( ( x + sqrt ( (x^2) + 0 ) ) / 2 ) ) 0
| otherwise = C (sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ((y/(2*(sqrt ( ( x + sqrt ( (x^2) + (y^2) ) ) / 2 ) ) ) ) )
-- quadratic polynomial : a.x^2 + b.x + c
data Quad = Q {
aCoeff, bCoeff, cCoeff :: Complex
} deriving Eq
instance Show Quad where
show (Q a b c) = show a ++ "x^2 + " ++ show b ++ "x + " ++ show c
solve :: Quad -> (Complex, Complex)
solve (Q a b c) = STUCK!
EDIT: I seem to have missed the point of using my own complex data type to learn about custom data types. I am well aware that I can use complex.data. Any help that could be provided using my solution so far would be greatly appreciated. \
2: , . , ( ) . , , (, ) .
, , , . - .