I am currently trying to find cluster centers in grouped data. Using a trial dataset and problem determination, I can create a cluster kmeanswith each group. However, when it comes to each cluster center for these groups, I do not know how to get them. https://rdrr.io/cran/broom/man/kmeans_tidiers.html
Sample data is taken from (with minor changes to the add column gr) Sample data
library(dplyr)
library(broom)
library(ggplot2)
set.seed(2015)
sizes_1 <- c(20, 100, 500)
sizes_2 <- c(10, 50, 100)
centers_1 <- data_frame(x = c(1, 4, 6),
y = c(5, 0, 6),
n = sizes_1,
cluster = factor(1:3))
centers_2 <- data_frame(x = c(1, 4, 6),
y = c(5, 0, 6),
n = sizes_2,
cluster = factor(1:3))
points1 <- centers_1 %>%
group_by(cluster) %>%
do(data_frame(x = rnorm(.$n, .$x),
y = rnorm(.$n, .$y),
gr="1"))
points2 <- centers_2 %>%
group_by(cluster) %>%
do(data_frame(x = rnorm(.$n, .$x),
y = rnorm(.$n, .$y),
gr="2"))
combined_points <- rbind(points1, points2)
> combined_points
cluster x y gr
<fctr> <dbl> <dbl> <chr>
1 1 3.66473833 4.285771 1
2 1 0.51540619 5.565826 1
3 1 0.11556319 5.592178 1
4 1 1.60513712 5.360013 1
5 1 2.18001557 4.955883 1
6 1 1.53998887 4.530316 1
7 1 -1.44165622 4.561338 1
8 1 2.35076259 5.408538 1
9 1 -0.03060973 4.980363 1
10 1 2.22165205 5.125556 1
ggplot(combined_points, aes(x, y)) +
facet_wrap(~gr) +
geom_point(aes(color = cluster))

Ok, I'm fine while here. When I want to extract each center of the cluster in each group
clust <- combined_points %>%
group_by(gr) %>%
dplyr::select(x, y) %>%
kmeans(3)
> clust
K-means clustering with 3 clusters of sizes 594, 150, 36
Cluster means:
gr x y
1 1.166667 6.080832 6.0074885
2 1.333333 4.055645 0.0654158
3 1.305556 1.507862 5.2417670
As we can see, the number is grchanged, and I do not know that these centers belong to which group.
when we take one step forward to see the format tidy clust
> tidy(clust)
x1 x2 x3 size withinss cluster
1 1.166667 6.080832 6.0074885 594 1095.3047 1
2 1.333333 4.055645 0.0654158 150 312.4182 2
3 1.305556 1.507862 5.2417670 36 115.2484 3
gr 2.
, . , ! !