Is there a way to generate a quasiperiodic signal (a signal with a certain frequency distribution, like a normal distribution)? In addition, the signal should not have a stationary frequency distribution, since the inverse Fourier transform of the Gauss function is still a Gaussian function, and what I want is an oscillating signal.
I used a discrete series of normally distributed frequencies to generate a signal, i.e.

Frequencies are allocated as follows:

So, with the initial phases

i got a signal

However, the signal is similar to

and its FFT spectrum is similar to
.
, , t = 0 ( 4, ), 5.
, , , . , .
, ?
Python:
import numpy as np
from scipy.special import erf, erfinv
def gaussian_frequency(array_length = 10000, central_freq = 100, std = 10):
n = np.arange(array_length)
f = np.sqrt(2)*std*erfinv(2*n/array_length - erf(central_freq/np.sqrt(2)/std)) + central_freq
return f
f = gaussian_frequency()
phi = np.linspace(0,2*np.pi, len(f))
t = np.linspace(0,100,100000)
signal = np.zeros(len(t))
for k in range(len(f)):
signal += np.sin(phi[k] + 2*np.pi*f[k]*t)
def fourierPlt(signal, TIMESTEP = .001):
num_samples = len(signal)
k = np.arange(num_samples)
Fs = 1/TIMESTEP
T = num_samples/Fs
frq = k/T # two sides frequency range
frq = frq[range(int(num_samples/2))] # one side frequency range
fourier = np.fft.fft(signal)/num_samples # fft computing and normalization
fourier = abs(fourier[range(int(num_samples/2))])
fourier = fourier/sum(fourier)
plt.plot(frq, fourier, 'r', linewidth = 1)
plt.title("Fast Fourier Transform")
plt.xlabel('$f$/Hz')
plt.ylabel('Normalized Spectrum')
return(frq, fourier)
fourierPlt(signal)