At least if it I
has positive diagonal entries, you can simply solve the converted system:
>>> A = np.random.random((3, 3))
>>> A = A.T @ A
>>> I = np.identity(3) * np.random.random((3,))
>>> J = np.sqrt(np.einsum('ii->i', I))
>>> B = A / np.outer(J, J)
>>> eval_, evec = np.linalg.eigh(B)
>>> evec /= J[:, None]
>>> A @ evec
array([[ -1.43653725e-02, 4.14643550e-01, -2.42340866e+00],
[ -1.75615960e-03, -4.17347693e-01, -8.19546081e-01],
[ 1.90178603e-02, 1.34837899e-01, -1.69999003e+00]])
>>> eval_ * (I @ evec)
array([[ -1.43653725e-02, 4.14643550e-01, -2.42340866e+00],
[ -1.75615960e-03, -4.17347693e-01, -8.19546081e-01],
[ 1.90178603e-02, 1.34837899e-01, -1.69999003e+00]])
OP example. IMPORTANT: The use np.array
of I
and C
, np.matrix
it will not work.
>>> I=np.array([[2,0,0],[0,6,0],[0,0,5]])
>>> C=np.array([[4,7,0],[7,8,-4],[0,-4,1]])
>>>
>>> J = np.sqrt(np.einsum('ii->i', I))
>>> B = C / np.outer(J, J)
>>> eval_, evec = np.linalg.eigh(B)
>>> evec /= J[:, None]
>>>
>>> evec
array([[-0.35578356, -0.31094779, -0.52605088],
[ 0.27778714, 0.1343625 , -0.267297 ],
[ 0.23826117, -0.37371199, 0.05975754]])
>>> eval_
array([-0.73271478, 0.48762792, 3.7784202 ])
I
, eig
eigh
, complex
dtype
.