This may give you some ideas:
transitions = ['A', 'B', 'B', 'C', 'B', 'A', 'D', 'D', 'A', 'B', 'A', 'D']
def rank(c):
return ord(c) - ord('A')
T = [rank(c) for c in transitions]
M = [[0]*4 for _ in range(4)]
for (i,j) in zip(T,T[1:]):
M[i][j] += 1
for row in M:
n = sum(row)
if n > 0:
row[:] = [f/sum(row) for f in row]
for row in M:
print(row)
output:
[0.0, 0.5, 0.0, 0.5]
[0.5, 0.25, 0.25, 0.0]
[0.0, 1.0, 0.0, 0.0]
[0.5, 0.0, 0.0, 0.5]
On Edit Here is a function that implements the following ideas:
def transition_matrix(transitions):
n = 1+ max(transitions)
M = [[0]*n for _ in range(n)]
for (i,j) in zip(transitions,transitions[1:]):
M[i][j] += 1
for row in M:
s = sum(row)
if s > 0:
row[:] = [f/s for f in row]
return M
t = [1,1,2,6,8,5,5,7,8,8,1,1,4,5,5,0,0,0,1,1,4,4,5,1,3,3,4,5,4,1,1]
m = transition_matrix(t)
for row in m: print(' '.join('{0:.2f}'.format(x) for x in row))
Conclusion:
0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 0.12 0.12 0.25 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
0.00 0.20 0.00 0.00 0.20 0.60 0.00 0.00 0.00
0.17 0.17 0.00 0.00 0.17 0.33 0.00 0.17 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.33