Consider the following development:
Require Import Relation RelationClasses.
Set Implicit Arguments.
CoInductive stream (A : Type) : Type :=
| scons : A -> stream A -> stream A.
CoInductive stream_le (A : Type) {eqA R : relation A}
`{PO : PartialOrder A eqA R} :
stream A -> stream A -> Prop :=
| le_step : forall h1 h2 t1 t2, R h1 h2 ->
(eqA h1 h2 -> stream_le t1 t2) ->
stream_le (scons h1 t1) (scons h2 t2).
If I have a hypothesis stream_le (scons h1 t1) (scons h2 t2), it would be wise for tactics to destructturn it into a couple of hypotheses R h1 h2and eqA h1 h2 -> stream_le t1 t2. But this is not what happens because it destructloses information when it does something non-trivial. Instead, the new members are introduced in context h0, h3, t0, t3, do not remind you that they are, respectively h1, h2, t1, t2.
I would like to know if there is a quick and easy way to make this smart destruct. Here is what I have right now:
Theorem stream_le_destruct : forall (A : Type) eqA R
`{PO : PartialOrder A eqA R} (h1 h2 : A) (t1 t2 : stream A),
stream_le (scons h1 t1) (scons h2 t2) ->
R h1 h2 /\ (eqA h1 h2 -> stream_le t1 t2).
Proof.
intros.
destruct H eqn:Heq.
remember (scons h1 t1) as s1 eqn:Heqs1;
remember (scons h2 t2) as s2 eqn:Heqs2;
destruct H;
inversion Heqs1; subst; clear Heqs1;
inversion Heqs2; subst; clear Heqs2.
split; assumption.
Qed.
source
share