Explanation
The key point of this problem is to ignore half A and B of each step recursively, comparing the median of the remaining A and B:
if (aMid < bMid) Keep [aMid +1 ... n] and [bLeft ... m]
else Keep [bMid + 1 ... m] and [aLeft ... n]
As the following: time complexity O(log(m + n))
public double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length, n = B.length;
int l = (m + n + 1) / 2;
int r = (m + n + 2) / 2;
return (getkth(A, 0, B, 0, l) + getkth(A, 0, B, 0, r)) / 2.0;
}
public double getkth(int[] A, int aStart, int[] B, int bStart, int k) {
if (aStart > A.length - 1) return B[bStart + k - 1];
if (bStart > B.length - 1) return A[aStart + k - 1];
if (k == 1) return Math.min(A[aStart], B[bStart]);
int aMid = Integer.MAX_VALUE, bMid = Integer.MAX_VALUE;
if (aStart + k/2 - 1 < A.length) aMid = A[aStart + k/2 - 1];
if (bStart + k/2 - 1 < B.length) bMid = B[bStart + k/2 - 1];
if (aMid < bMid)
return getkth(A, aStart + k / 2, B, bStart, k - k / 2);
else
return getkth(A, aStart, B, bStart + k / 2, k - k / 2);
}
, ! , .