(++) , , - , (++) (++). - .
: m,
((ws ++ xs) ++ ys) ++ zs -- m = 3 in this example
WHNF m thunks, (++) .
case (
case (
case ws of { [] -> xs ; (w:ws) -> w:(ws ++ xs) }
) of { [] -> ys ; (x:xs) -> x:(xs ++ ys) }
) of { [] -> zs ; (y:ys) -> y:(ys ++ zs) }
, n , m thunks n , O (m * n). (.. (([w] ++ [x]) ++ [y]) ++ [z]), m = n, O (n 2).
,
ws ++ (xs ++ (ys ++ zs))
WHNF (O (1)):
case ws of
[] -> xs ++ (ys ++ zs)
(w:ws) -> w:(ws ++ (xs ++ (ys ++ zs)))
n n thunks, , .
, (O (m)) , (++).
newtype DList a = DList ([a] -> [a])
fromList xs = DList (xs ++)
toList (DList f) = f []
instance Monoid (DList a) where
mempty = fromList []
DList f `mappend` DList g = DList (f . g)
,
toList (((fromList ws <> fromList xs) <> fromList ys) <> fromList zs)
- :
((((ws ++) . (xs ++)) . (ys ++)) . (zs ++)) []
-- expand innermost (.)
(((\l0 -> ws ++ (xs ++ l0)) . (ys ++)) . (zs ++)) []
-- expand innermost (.)
((\l1 -> (\l0 -> ws ++ (xs ++ l0)) (ys ++ l1)) . (zs ++)) []
-- beta reduce
((\l1 -> ws ++ (xs ++ (ys ++ l1))) . (zs ++)) []
-- expand innermost (.)
(\l2 -> (\l1 -> ws ++ (xs ++ (ys ++ l1))) (zs ++ l2)) []
-- beta reduce
(\l2 -> ws ++ (xs ++ (ys ++ (zs ++ l2)))) []
-- beta reduce
ws ++ (xs ++ (ys ++ (zs ++ [])))
O (m) , O (n) O (m + n), O (m * n). , m = n O (2n) ~ O (n), O (n 2).
Monoid.
newtype RMonoid m = RMonoid (m -> m) -- "right-associative monoid"
toRM m = RMonoid (m <>)
fromRM (RMonoid f) = f mempty
instance Monoid m => Monoid (RMonoid m):
mempty = toRM mempty
RMonoid f `mappend` RMonoid g = RMonoid (f . g)
. , , Codensity, , (>>=) ( (<>)).
, , (++) - . , , append , .
data Snoc a = Nil | Snoc (Snoc a) a
xs +++ Nil = xs
xs +++ (Snoc ys y) = Snoc (xs +++ ys) y
O (1) WHNF ,
((ws +++ xs) +++ ys) +++ zs
case zs of
Nil -> (ws +++ xs) +++ ys
Snoc zs z -> Snoc ((ws +++ xs) +++ ys) +++ zs) z
.
ws +++ (xs +++ (ys +++ zs))
case (
case (
case zs of { Nil -> ys ; (Snoc zs z) -> Snoc (ys +++ zs) z }
) of { Nil -> xs ; (Snoc ys y) -> Snoc (xs +++ ys) y }
) of { Nil -> ws ; (Snoc xs x) -> Snoc (ws +++ xs) y }
, , , !
newtype LMonoid m = LMonoid (m -> m) -- "left-associative monoid"
toLM m = LMonoid (<> m)
fromLM (LMonoid f) = f mempty
instance Monoid m => Monoid (LMonoid m):
mempty = toLM mempty
LMonoid f `mappend` LMonoid g = LMonoid (g . f)