. , .
Node Harvest , scikit . , , . . matplotlib:
n = 100
np.random.seed(42)
x = np.concatenate([np.random.randn(n, 2) + 1, np.random.randn(n, 2) - 1])
y = ['b'] * n + ['r'] * n
plt.scatter(x[:, 0], x[:, 1], c=y)
dtc = DecisionTreeClassifier().fit(x, y)
rectangles = decision_areas(dtc, [-3, 3, -3, 3])
plot_areas(rectangles)
plt.xlim(-3, 3)
plt.ylim(-3, 3)

, , . , , , .
rectangles numpy. , [left, right, top, bottom, class].
: Iris
Iris 2, . plot_areas: color = ['b', 'r', 'g'][int(rect[4])].
, 4- ( ), 2D. , decision_area. x y - , x y . x=0, y=1, , . Iris , .
decision_areas . , (, , xyz, B). . -3..3 , ( , 3).
0..7 0..5:
from sklearn.datasets import load_iris
data = load_iris()
x = data.data
y = data.target
dtc = DecisionTreeClassifier().fit(x, y)
rectangles = decision_areas(dtc, [0, 7, 0, 5], x=2, y=3)
plt.scatter(x[:, 2], x[:, 3], c=y)
plot_areas(rectangles)

, . , , . . .
, , , . , .
, , , . 2- , :
from sklearn.datasets import load_iris
data = load_iris()
x = data.data[:, [2, 3]]
y = data.target
dtc = DecisionTreeClassifier().fit(x, y)
rectangles = decision_areas(dtc, [0, 7, 0, 3], x=0, y=1)
plt.scatter(x[:, 0], x[:, 1], c=y)
plot_areas(rectangles)

, :
import numpy as np
from collections import deque
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import _tree as ctree
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
class AABB:
"""Axis-aligned bounding box"""
def __init__(self, n_features):
self.limits = np.array([[-np.inf, np.inf]] * n_features)
def split(self, f, v):
left = AABB(self.limits.shape[0])
right = AABB(self.limits.shape[0])
left.limits = self.limits.copy()
right.limits = self.limits.copy()
left.limits[f, 1] = v
right.limits[f, 0] = v
return left, right
def tree_bounds(tree, n_features=None):
"""Compute final decision rule for each node in tree"""
if n_features is None:
n_features = np.max(tree.feature) + 1
aabbs = [AABB(n_features) for _ in range(tree.node_count)]
queue = deque([0])
while queue:
i = queue.pop()
l = tree.children_left[i]
r = tree.children_right[i]
if l != ctree.TREE_LEAF:
aabbs[l], aabbs[r] = aabbs[i].split(tree.feature[i], tree.threshold[i])
queue.extend([l, r])
return aabbs
def decision_areas(tree_classifier, maxrange, x=0, y=1, n_features=None):
""" Extract decision areas.
tree_classifier: Instance of a sklearn.tree.DecisionTreeClassifier
maxrange: values to insert for [left, right, top, bottom] if the interval is open (+/-inf)
x: index of the feature that goes on the x axis
y: index of the feature that goes on the y axis
n_features: override autodetection of number of features
"""
tree = tree_classifier.tree_
aabbs = tree_bounds(tree, n_features)
rectangles = []
for i in range(len(aabbs)):
if tree.children_left[i] != ctree.TREE_LEAF:
continue
l = aabbs[i].limits
r = [l[x, 0], l[x, 1], l[y, 0], l[y, 1], np.argmax(tree.value[i])]
rectangles.append(r)
rectangles = np.array(rectangles)
rectangles[:, [0, 2]] = np.maximum(rectangles[:, [0, 2]], maxrange[0::2])
rectangles[:, [1, 3]] = np.minimum(rectangles[:, [1, 3]], maxrange[1::2])
return rectangles
def plot_areas(rectangles):
for rect in rectangles:
color = ['b', 'r'][int(rect[4])]
print(rect[0], rect[1], rect[2] - rect[0], rect[3] - rect[1])
rp = Rectangle([rect[0], rect[2]],
rect[1] - rect[0],
rect[3] - rect[2], color=color, alpha=0.3)
plt.gca().add_artist(rp)