plus - Index
>>> plus Zero Zero
Zero
>>> plus Zero (Up Zero)
Up Zero
, . "" , Zero, Up Zero .. . , .
{-
{-
{-
{-
{-
data Direction = T | X | Y | Z
data Index = Zero | Up Index | Down Index deriving (Eq, Show)
-- type function Plus
type family Plus (i :: Index) (j :: Index) :: Index where
Plus Zero x = x
Plus (Up x) y = Up (Plus x y)
Plus (Down x) y = Down (Plus x y)
-- value fuction plus
plus :: Index -> Index -> Index
plus Zero x = x
plus (Up x) y = Up (plus x y)
plus (Down x) y = Down (plus x y)
data Tensor (a :: Index) where
Scalar :: Double -> Tensor Zero
Cov :: (Direction -> Tensor b) -> Tensor (Up b)
Con :: (Direction -> Tensor b) -> Tensor (Down b)
add :: Tensor a -> Tensor a -> Tensor a
add (Scalar x) (Scalar y) = (Scalar (x + y))
add (Cov f) (Cov g) = (Cov (\d -> add (f d) (g d)))
add (Con f) (Con g) = (Con (\d -> add (f d) (g d)))
mul :: Tensor a -> Tensor b -> Tensor (Plus a b)
mul (Scalar x) (Scalar y) = (Scalar (x*y))
mul (Scalar x) (Cov f) = (Cov (\d -> mul (Scalar x) (f d)))
mul (Scalar x) (Con f) = (Con (\d -> mul (Scalar x) (f d)))
mul (Cov f) y = (Cov (\d -> mul (f d) y))
mul (Con f) y = (Con (\d -> mul (f d) y))
plus, disambiguating tick ', , Zero, Up ..
type family Plus (i :: Index) (j :: Index) :: Index where
Plus 'Zero x = x
Plus ('Up x) y = 'Up (Plus x y)
Plus ('Down x) y = 'Down (Plus x y)
TypeOperators a + b, Plus a b .
type family (i :: Index) + (j :: Index) :: Index where
Zero + x = x
Up x + y = Up (x + y)
Down x + y = Down (x + y)