, ; ,
O(n**k) > O(log(n, base))
k > 0 base > 1 (k = 1/2 sqrt).
O(f(n)), n,
. , O :
O(n**k) = O(log(n, base))
C ,
O(n**k) <= C * O(log(n, base))
n; , log(n, base) 0, n, ):
lim(n**k/log(n, base)) = C
n->+inf
, L'Hospital Rule, .. :
lim(n**k/log(n)) =
lim([k*n**(k-1)]/[ln(base)/n]) =
ln(base) * k * lim(n**k) = +infinity
, C , O(n**k) < C*log(n, base) , ,
O(n**k) > O(log(n, base))