How to find and name adjacent nonzero entries in a sparse matrix in R?

My problem is conceptually simple. I am looking for its computationally efficient solution (my own, which I attach at the end).

Suppose we have a potentially very large sparse matrix, such as the bottom left, and we want to “name” each region of adjacent nonzero elements as a separate code (see the matrix on the right).

1 1 1 . . . . .          1 1 1 . . . . .
1 1 1 . 1 1 . .          1 1 1 . 4 4 . .
1 1 1 . 1 1 . .          1 1 1 . 4 4 . .
. . . . 1 1 . .   --->   . . . . 4 4 . .
. . 1 1 . . 1 1          . . 3 3 . . 7 7
1 . 1 1 . . 1 1          2 . 3 3 . . 7 7
1 . . . 1 . . .          2 . . . 5 . . .
1 . . . . 1 1 1          2 . . . . 6 6 6

In my application, adjacent elements form rectangles, lines or separate points, and they can touch each other only with vertices (i.e. there will be no irregular / non-rectangular areas in the matrix).

The solution I represent is to match the row and column indices of a sparse matrix representation with a vector with the corresponding values ​​("name" codes). My solution uses a few for loopsand works great for small and medium matrices, but will quickly get stuck in the loop when the matrix sizes become large (> 1000). It probably depends on the fact that I'm not so advanced in programming R - I could not find any computational trick / function to better solve it.

Can anyone suggest a more efficient computing way to do this in R?

My decision:

mySolution <- function(X){

  if (class(X) != "ngCMatrix") {stop("Input must be a Sparse Matrix")}
  ind <- which(X == TRUE, arr.ind = TRUE)
  r <- ind[,1]
  c <- ind[,2]

  lr <- nrow(ind)
  for (i in 1:lr) {
    if(i == 1) {bk <- 1}
    else {
      if (r[i]-r[i-1] == 1){bk <- c(bk, bk[i-1])}
      else {bk <- c(bk, bk[i-1]+1)}
    }
  }

  for (LOOP in 1:(lr-1)) {
    tr <- r[LOOP]
    tc <- c[LOOP]
    for (j in (LOOP+1):lr){
      if (r[j] == tr) {
        if(c[j] == tc + 1) {bk[j] <- bk[LOOP]} 
      }
    }
  }

  val <- unique(bk)
  for (k in 1:lr){
    bk[k] <- which(val==bk[k])
  }

  return(sparseMatrix(i = r, j = c, x = bk))
}

Thanks in advance for any help or guide.

+4
source share
1 answer

, , , //, , [row, col] (abs(row1 - row2) + abs(col1 - col2)) < 2.

, [row, col]:

sm = as.matrix(summary(m))

, , GiuGe, "" :

d = dist(sm, "manhattan")

. , cutree ing "h = 1" ( "< 2" ):

gr = cutree(hclust(d, "single"), h = 1)

, :

sparseMatrix(i = sm[, "i"], j = sm[, "j"], x = gr)
#8 x 8 sparse Matrix of class "dgCMatrix"
#                    
#[1,] 1 1 1 . . . . .
#[2,] 1 1 1 . 4 4 . .
#[3,] 1 1 1 . 4 4 . .
#[4,] . . . . 4 4 . .
#[5,] . . 3 3 . . 7 7
#[6,] 2 . 3 3 . . 7 7
#[7,] 2 . . . 5 . . .
#[8,] 2 . . . . 6 6 6

"m":

library(Matrix)
m = new("ngCMatrix"
    , i = c(0L, 1L, 2L, 5L, 6L, 7L, 0L, 1L, 2L, 0L, 1L, 2L, 4L, 5L, 4L, 
5L, 1L, 2L, 3L, 6L, 1L, 2L, 3L, 7L, 4L, 5L, 7L, 4L, 5L, 7L)
    , p = c(0L, 6L, 9L, 14L, 16L, 20L, 24L, 27L, 30L)
    , Dim = c(8L, 8L)
    , Dimnames = list(NULL, NULL)
    , factors = list()
)

10 '17

(, , , //), [row, col] . "< 2", , . :

ff = function(x) 
{
    sm = as.matrix(summary(x))

    gr = integer(nrow(sm)); ngr = 0L ; gr[1] = ngr 

    lastSeenRow = integer(nrow(x))
    lastSeenCol = integer(ncol(x))

    for(k in 1:nrow(sm)) {
        kr = sm[k, 1]; kc = sm[k, 2]
        i = lastSeenRow[kr]
        j = lastSeenCol[kc]

        if(i && (abs(kc - sm[i, 2]) == 1)) gr[k] = gr[i]
        else if(j && (abs(kr - sm[j, 1]) == 1)) gr[k] = gr[j]  
             else { ngr = ngr + 1L; gr[k] = ngr } 

        lastSeenRow[kr] = k
        lastSeenCol[kc] = k        
    }

    sparseMatrix(i = sm[, "i"], j = sm[, "j"], x = gr)                 
}                  

"m":

ff(m)
#8 x 8 sparse Matrix of class "dgCMatrix"
#                    
#[1,] 1 1 1 . . . . .
#[2,] 1 1 1 . 4 4 . .
#[3,] 1 1 1 . 4 4 . .
#[4,] . . . . 4 4 . .
#[5,] . . 3 3 . . 7 7
#[6,] 2 . 3 3 . . 7 7
#[7,] 2 . . . 5 . . .
#[8,] 2 . . . . 6 6 6

, , , :

identical(mySolution(m), ff(m))
#[1] TRUE

a, , :

mm = new("ngCMatrix"
    , i = c(25L, 26L, 27L, 25L, 29L, 25L, 25L, 17L, 18L, 26L, 3L, 4L, 5L, 
14L, 17L, 18L, 25L, 27L, 3L, 4L, 5L, 17L, 18L, 23L, 26L, 3L, 
4L, 5L, 10L, 17L, 18L, 9L, 11L, 17L, 18L, 10L, 17L, 18L, 3L, 
17L, 18L, 21L, 17L, 18L, 17L, 18L, 1L, 2L, 3L, 4L, 16L, 8L, 17L, 
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 7L, 9L, 10L, 11L, 26L, 
8L, 27L, 1L, 2L, 28L, 1L, 2L, 15L, 27L, 1L, 2L, 21L, 22L, 1L, 
2L, 7L, 21L, 22L, 1L, 2L, 6L, 24L, 1L, 2L, 5L, 11L, 16L, 25L, 
26L, 27L, 4L, 15L, 17L, 19L, 25L, 26L, 27L, 3L, 16L, 25L, 26L, 
27L, 2L, 28L, 1L)
    , p = c(0L, 0L, 3L, 3L, 5L, 6L, 7L, 7L, 10L, 18L, 25L, 31L, 35L, 38L, 
42L, 44L, 46L, 51L, 61L, 66L, 68L, 71L, 75L, 79L, 84L, 88L, 96L, 
103L, 108L, 110L, 111L)
    , Dim = c(30L, 30L)
    , Dimnames = list(NULL, NULL)
    , factors = list()
)
identical(mySolution(mm), ff(mm))
#[1] TRUE

:

times = 30 # times `dim(mm)`
MM2 = do.call(cbind, rep_len(list(do.call(rbind, rep_len(list(mm), times))), times))
dim(MM2)
#[1] 900 900

system.time({ ans1 = mySolution(MM2) })
#   user  system elapsed 
# 449.50    0.53  463.26

system.time({ ans2 = ff(MM2) })
#   user  system elapsed 
#   0.51    0.00    0.52

identical(ans1, ans2)
#[1] TRUE
+1

Source: https://habr.com/ru/post/1668748/


All Articles