Primarily:
(λ a b c . c b a) z z (λ w v . w)
abbreviated for:
(λ a . (λ b . (λ c . c b a) ) ) z z (λ w . (λ v . w) )
Well, if you apply beta reduction on:
(λ a b c . c b a) z z (λ w v . w)
(bold is added for the "active" variable, so to speak, and italics to replace it)
you are replacing with oparand , so now the result: az
(λ b c . c b z) z (λ w v . w)
So, we replaced awith zin the area of the lambda expression , then we will perform an additional reduction:
(λ b c . c b z) z (λ w v . w)
at
(λ c . c z z) (λ w v . w)
- , :
(λ c . c z z) (λ w v . w)
:
((λ w v . w) z z)
, . - :
(λ w v . w) z z
(λ v . z) z
, , , , - ( - ):
(λ v . z) z
(z)
z
- - , : Haskell - - , - .