I have five elements in the design, when I run alphaon it, I get the following results without errors
psych::alpha(construct,
na.rm = TRUE,
title = 'myscale',
n.iter = 1000)
Reliability analysis myscale
Call: psych::alpha(x = construct, title = "myscale", na.rm = TRUE,
n.iter = 1000)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd
0.81 0.81 0.78 0.46 4.3 0.013 2.6 0.89
lower alpha upper 95% confidence boundaries
0.78 0.81 0.84
lower median upper bootstrapped confidence intervals
0.77 0.81 0.84
I read the article From Alpha to omega: A practical solution to the pervasive problem of internal consistency estimation link
He recommends using the code below
MBESS::ci.reliability(construct, interval.type="bca", B=1000, type = "omega")
$est
[1] 0.8107376
$se
[1] 0.01651936
$ci.lower
[1] 0.7764029
$ci.upper
[1] 0.839944
$conf.level
[1] 0.95
$type
[1] "omega"
$interval.type
[1] "bca bootstrap"
I'm trying to run omega on my sample set using the psych package to keep things in my analysis
psych::omega(m = construct,
nfactors = 1, fm = "pa", n.iter = 1000, p = 0.05,
title = "Omega", plot = FALSE, n.obs = 506)
I get two error messages
In factor.scores, the correlation matrix is singular, using the Omega_h approximation for 1 factor does not make sense, just omega_t
This warning occurs because the number of columns for Omega_h is two. A previous question about SO answers this somewhat
McDonalds omega: warnings in R
Im error having below
(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,: : (NA) . . : 50 ( (), 50)
, ,
Q1 Q2 Q3
Min. :0.000 Min. :0.000 Min. :0.000
1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
Median :3.000 Median :2.000 Median :3.000
Mean :2.597 Mean :2.393 Mean :3.227
3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:4.000
Max. :6.000 Max. :6.000 Max. :6.000
Q4 Q5
Min. :0.00 Min. :0.000
1st Qu.:1.00 1st Qu.:2.000
Median :2.00 Median :2.000
Mean :2.17 Mean :2.445
3rd Qu.:3.00 3rd Qu.:3.000
Max. :6.00 Max. :6.000
- 100 (Alpha 0,56), omega
structure(list(Q1 = c(4, 5, 3, 5, 4, 5, 3, 5, 5, 5, 6,
3, 5, 4, 6, 5, 5, 6, 7, 4, 5, 5, 3, 4, 4, 5, 4, 3, 5, 4, 5, 5,
6, 6, 3, 6, 3, 4, 4, 4, 6, 5, 3, 2, 6, 6, 4, 5, 4, 3, 6, 4, 4,
5, 6, 2, 4, 3, 4, 6, 4, 6, 4, 5, 5, 6, 4, 6, 5, 5, 4, 5, 6, 6,
2, 5, 4, 3, 4, 4, 4, 6, 3, 3, 5, 4, 4, 4, 5, 5, 5, 3, 6, 6, 6,
6, 5, 4, 3, 5), Q2 = c(7, 4, 4, 4, 4, 6, 6, 6, 7, 6, 5,
6, 5, 4, 5, 6, 6, 6, 7, 5, 4, 4, 6, 6, 4, 4, 6, 2, 6, 5, 4, 6,
4, 6, 6, 6, 5, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 6, 2, 6, 6, 5, 4,
6, 6, 4, 4, 7, 6, 5, 5, 5, 5, 6, 5, 5, 4, 5, 5, 5, 4, 6, 7, 5,
5, 5, 6, 5, 6, 5, 6, 7, 2, 6, 5, 7, 3, 5, 5, 3, 3, 3, 7, 4, 5,
6, 6, 6, 5, 7), Q3 = c(5, 4, 5, 6, 4, 4, 5, 4, 2, 6, 5,
5, 5, 5, 7, 5, 5, 6, 7, 6, 3, 6, 6, 6, 5, 6, 6, 5, 5, 4, 5, 5,
6, 6, 5, 6, 5, 5, 4, 4, 6, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 4,
3, 5, 4, 5, 6, 6, 6, 4, 5, 5, 5, 6, 4, 5, 5, 7, 4, 5, 6, 6, 5,
5, 3, 3, 5, 4, 6, 5, 5, 1, 3, 5, 3, 2, 5, 4, 6, 6, 6, 6, 4, 6,
3, 6, 6, 6, 5), Q4 = c(6, 6, 4, 7, 4, 6, 7, 6, 7, 6, 6,
6, 5, 7, 7, 6, 6, 5, 7, 7, 6, 6, 7, 7, 6, 6, 6, 5, 6, 7, 5, 6,
7, 5, 4, 6, 4, 3, 6, 4, 6, 6, 6, 3, 5, 7, 5, 6, 4, 6, 7, 6, 7,
4, 6, 3, 5, 7, 5, 4, 6, 6, 4, 6, 5, 5, 5, 5, 7, 7, 7, 6, 6, 6,
5, 6, 6, 4, 5, 7, 6, 7, 3, 5, 6, 5, 6, 5, 5, 7, 7, 6, 6, 2, 7,
6, 6, 7, 7, 5)), .Names = c("Q1", "Q2", "Q3",
"Q4"), row.names = c(NA, 100L), class = "data.frame")
- , ?