.
, , , . , , , . ( , remaining_data sum initial_data .)
, , , .
slidingAverage ( ), centeredSlidingAverage , .
import Data.List (splitAt, replicate)
slidingAverage :: Int -> [Int] -> [Double] -- window size, source list -> list of averages
slidingAverage w xs = map divide $ initial_sum : slidingSum initial_sum xs remaining_data
where
divide = (\n -> (fromIntegral n) / (fromIntegral w)) -- divides the sums by window size
initial_sum = sum initial_data
(initial_data, remaining_data) = splitAt w xs
centeredSlidingAverage :: Int -> [Int] -> [Double] -- window size, source list -> list of averages
centeredSlidingAverage w xs = slidingAverage w $ left_padding ++ xs ++ right_padding
where
left_padding = replicate half_width 0
right_padding = replicate (w - half_width) 0
half_width = (w `quot` 2) -- quot is integer division
slidingSum :: Int -> [Int] -> [Int] -> [Int] -- window_sum before_window after_window -> list of sums
slidingSum _ _ [] = []
slidingSum window_sum before_window after_window = new_sum : slidingSum new_sum new_before new_after
where
value_to_go = head before_window
new_before = tail before_window
value_to_come = head after_window
new_after = tail after_window
new_sum = window_sum - value_to_go + value_to_come
When I try length $ slidingAverage 10 [1..1000000], it takes less than a second for my MBP. Due to laziness , it centeredSlidingAveragetakes about the same time.
source
share