polar Octave rtick ttick , , , , tticklabel, -.
, , 0 - 100, , - 0 - 2 * pi ( , polar). findall , , -, , 0-100.
% Your first plot is going to use the 0 - 2pi range for theta
theta1 = linspace(0, 2*pi, 1000);
rho1 = sin(theta1 * 5);
plot1 = polar(theta1, rho1);
hold on
% For your second plot, just transform your 0 - 100 range to be 0 - 360 instead
theta2 = 0:100;
rho2 = linspace(0, 1, numel(theta2));
modtheta2 = 2*pi * (theta2 ./ 100);
plot2 = polar(modtheta2, rho2);
% Now we need to modify all of the labels
% Find all of the original labels
labels = findall(gca, 'type', 'text');
% Figure out which ones are the radial labels. To do this we compute the distance
% from the center of the plot and find the most common distance
distances = cellfun(@(x)norm(x(1:2)), get(labels, 'Position'));
% Figure out the most common
[~, ~, b] = unique(round(distances * 100));
h = hist(b, 1:max(b));
labels = labels(b == find(h == max(h)));
% Make a copy of these labels (have to use arrayfun for 4.0.x compatibility)
blacklabels = arrayfun(@(L)copyobj(L, gca), labels);
% Shift these labels outward by 15%
arrayfun(@(x)set(x, 'Position', get(x, 'Position') * 1.15), blacklabels);
% Now set the other labels to red and change their values
set(labels, 'COlor', 'red')
for k = 1:numel(labels)
value = str2num(get(labels(k), 'String'))
% Convert the value to be between 0 and 100
newvalue = 100 * (value / 360);
set(labels(k), 'String', sprintf('%0.2f', newvalue))
end
