, , , . , - .
A <- matrix(c(20.43, -8.59,-8.59, 24.03), nrow = 2)
E <- eigen(A, symmetric = TRUE)
U <- E[[2]]
D <- sqrt(E[[1]])
r <- 1.44
Z <- rbind(c(r, 0), c(0, r), c(-r, 0), c(0, -r))
Z <- tcrossprod(Z * rep(D, each = 4), U)
C0 <- c(-0.05, 0.09)
Z <- Z + rep(C0, each = 4)
, 3 :
?

x ^ 2 + y ^ 2 = 1.

r <- 1.44
theta <- seq(0, 2 * pi, by = 0.01 * pi)
X <- r * cbind(cos(theta), sin(theta))
A <- matrix(c(20.43, -8.59,-8.59, 24.03), nrow = 2)
R <- chol(A)
X1 <- X %*% R
Z <- rbind(c(r, 0), c(0, r), c(-r, 0), c(0, -r))
Z1 <- Z %*% R
g <- floor(4 * (1:nrow(X) - 1) / nrow(X)) + 1
plot(X1, asp = 1, col = g)
points(Z1, cex = 1.5, pch = 21, bg = 5)
points(X, col = g, cex = 0.25)
points(Z, cex = 1.5, pch = 21, bg = 5)
abline(h = 0, lty = 3, col = "gray", lwd = 1.5)
abline(v = 0, lty = 3, col = "gray", lwd = 1.5)

, R . .

r <- 1.44
theta <- seq(0, 2 * pi, by = 0.01 * pi)
X <- r * cbind(cos(theta), sin(theta))
A <- matrix(c(20.43, -8.59,-8.59, 24.03), nrow = 2)
E <- eigen(A, symmetric = TRUE)
U <- E[[2]]
D <- sqrt(E[[1]])
r <- 1.44
Z <- rbind(c(r, 0), c(0, r), c(-r, 0), c(0, -r))
X1 <- X * rep(D, each = nrow(X))
Z1 <- Z * rep(D, each = 4L)
Z2 <- tcrossprod(Z1, U)
X2 <- tcrossprod(X1, U)
g <- floor(4 * (1:nrow(X) - 1) / nrow(X)) + 1
plot(X2, asp = 1, col = g)
points(Z2, cex = 1.5, pch = 21, bg = 5)
points(X1, col = g)
points(Z1, cex = 1.5, pch = 21, bg = 5)
points(X, col = g, cex = 0.25)
points(Z, cex = 1.5, pch = 21, bg = 5)
abline(h = 0, lty = 3, col = "gray", lwd = 1.5)
abline(v = 0, lty = 3, col = "gray", lwd = 1.5)
segments(Z2[1,1], Z2[1,2], Z2[3,1], Z2[3,2], lty = 2, col = "gray", lwd = 1.5)
segments(Z2[2,1], Z2[2,2], Z2[4,1], Z2[4,2], lty = 2, col = "gray", lwd = 1.5)

, . , .