f (n) = 6 * 2 ^ n + n ^ 2big (O) = 2 ^ nbig (Omega) = 2 ^ n
f (n) = 6 * 2 ^ n + n ^ 2
big (O) = 2 ^ n
big (Omega) = 2 ^ n
In the above equation, both large (O) and large (Omega) have the same meaning. If the large (O) upper bound and the large (omega) lower bound should not be large (omega) = n ^ 2. Why do both have the same meaning?
, O & Omega; , & le; & ge; < > . , , a & ge; b a & le; b ( ), O, Omega; (, & Theta;).
n,
6 2 n + n 2 & le; 12 2 n 6 2 n + n 2 ( ), 2 n ( O ).
, 6 2 n + n 2 & ge; 0,1 2 n 6 2 n + n 2 ( ), 2 n ( ) .
, . , 6 2 n + n 2= & Theta; (2 n)
Source: https://habr.com/ru/post/1655756/More articles:Загрузка внешнего тега script в компонент реакции - domConvert float to int and leave null - pythonWhy doesn't sync work properly in this code? - javaGraphql Unknown argument to field - javascriptsparkr 2.0 read.df throws path error does not exist - apache-spark-2.0Проблема выбора селектора CSS с подсветкой - htmlTesting the asynchronous iOS module (waitForExpectations failing) in xCode 8 / Swift 3 - iosAlgorithm for calculating the shortest path between two points on the surface of a three-dimensional grid - algorithmHow do compilers manage their memory size? - compiler-constructionUnrecognized LLDB behavior in Android Studio 2.2 - androidAll Articles