Create a permutation with the same autocorrelation

My question is similar to this one , but with the difference that I need an array of zeros and ones as output. I have the original time series of zeros and ones with high autocorrelation (i.e. Clusters). For some significance testing, I need to create random arrays with the same number of zeros and ones. That is, rearranging the original array, however, autocorrelation should remain the same / similar to the original, so a simple one np.permutationdoes not help me.

Since I am implementing several implementations, I need a solution that will be as fast as possible. Any help is much appreciated.

+4
source share
1 answer

According to the question you are referring to, you want to rearrange xin such a way that

np.corrcoef(x[0: len(x) - 1], x[1: ])[0][1]

does not change.

Say the sequence x consists of

z 1 o 1 z 2 o 2 z 3 o 3 ... z k o k ,

where each z i is a sequence of 0s and each o i is a sequence of 1s. (There are four cases, depending on whether the sequence starts with 0 or 1, and whether it ends with 0 or 1, but they are basically the same).

Let p and q be each permutation {1, ..., k} and consider the sequence

z p [1] o q [1] z p [2] o q [2] z p [3] o q [3]... z p [k] o q [k] > ,

0s 1s .

, ,

0, 0, 0, 1, 1, 0, 1.

0, 0, 0, 1, 0, 1, 1,

- ,

0, 1, 1, 0, 0, 0, 1,

0, 1, 0, 0, 0, 1, 1.

:

  • ,

, , . ( . , .)

preprocess, starts_with_zero, zeros, ones, , ,

  • x 0
  • 0
  • 1

import numpy as np
import itertools

def preprocess(x):
    def find_runs(x, val):
        matches = np.concatenate(([0], np.equal(x, val).view(np.int8), [0]))
        absdiff = np.abs(np.diff(matches))
        ranges = np.where(absdiff == 1)[0].reshape(-1, 2)
        return ranges[:, 1] - ranges[:, 0]

    starts_with_zero = x[0] == 0

    run_lengths_0 = find_runs(x, 0)
    run_lengths_1 = find_runs(x, 1)
    zeros = [np.zeros(l) for l in run_lengths_0]
    ones = [np.ones(l) for l in run_lengths_1]

    return starts_with_zero, zeros, ones

( .)

, , ,

x = (np.random.uniform(size=10000) > 0.2).astype(int)

starts_with_zero, zeros, ones = preprocess(x)

, 0 1 :

def get_next_permutation(starts_with_zero, zeros, ones):
    np.random.shuffle(zeros)
    np.random.shuffle(ones)

    if starts_with_zero:
        all_ = itertools.izip_longest(zeros, ones, fillvalue=np.array([]))
    else:
        all_ = itertools.izip_longest(ones, zeros, fillvalue=np.array([]))
    all_ = [e for p in all_ for e in p]

    x_tag = np.concatenate(all_)

    return x_tag

( ),

x_tag = get_next_permutation(starts_with_zero, zeros, ones)

, :

starts_with_zero, zeros, ones = preprocess(x)

for i in range(<number of permutations needed):
    x_tag = get_next_permutation(starts_with_zero, zeros, ones)

,

x = (np.random.uniform(size=10000) > 0.2).astype(int)
print np.corrcoef(x[0: len(x) - 1], x[1: ])[0][1]

starts_with_zero, zeros, ones = preprocess(x)

for i in range(10):
    x_tag = get_next_permutation(starts_with_zero, zeros, ones)

    print x_tag[: 50]
    print np.corrcoef(x_tag[0: len(x_tag) - 1], x_tag[1: ])[0][1]

:

0.00674330566615
[ 1.  1.  1.  1.  1.  0.  0.  1.  1.  1.  1.  1.  1.  1.  1.  0.  1.  0.
  1.  1.  0.  1.  1.  1.  1.  0.  1.  1.  0.  0.  1.  0.  1.  1.  1.  1.
  0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
0.00674330566615
[ 1.  0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
  1.  1.  1.  1.  0.  1.  1.  0.  1.  1.  1.  1.  1.  1.  0.  0.  1.  0.
  1.  1.  1.  1.  0.  0.  0.  1.  1.  1.  1.  1.  1.  1.]
0.00674330566615
[ 1.  1.  1.  1.  1.  0.  0.  1.  1.  1.  0.  0.  0.  0.  1.  0.  1.  1.
  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  0.  1.  1.
  1.  1.  1.  1.  1.  1.  0.  1.  0.  0.  1.  1.  1.  0.]
0.00674330566615
[ 1.  1.  1.  1.  0.  1.  0.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  0.
  1.  1.  1.  1.  1.  0.  0.  1.  1.  1.  1.  0.  1.  1.  1.  1.  1.  1.
  1.  1.  1.  0.  1.  1.  1.  1.  1.  1.  1.  0.  0.  1.]
0.00674330566615
[ 1.  1.  1.  1.  0.  0.  0.  0.  1.  1.  0.  1.  1.  0.  0.  1.  0.  1.
  1.  1.  0.  1.  0.  1.  1.  0.  1.  1.  1.  1.  1.  1.  1.  0.  0.  1.
  0.  1.  1.  1.  1.  1.  1.  0.  1.  0.  1.  1.  1.  1.]
0.00674330566615
[ 1.  1.  0.  1.  1.  1.  0.  0.  1.  1.  0.  1.  1.  0.  0.  1.  1.  0.
  1.  1.  1.  0.  1.  1.  1.  1.  0.  0.  0.  1.  1.  1.  1.  1.  1.  1.
  0.  1.  1.  1.  1.  0.  1.  1.  0.  1.  0.  0.  1.  1.]
0.00674330566615
[ 1.  1.  0.  0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
  1.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  1.  0.  1.  1.  1.  1.  1.
  1.  1.  0.  1.  0.  1.  1.  0.  1.  0.  1.  1.  1.  1.]
0.00674330566615
[ 1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  0.  1.  1.  0.  1.  0.  1.  1.
  1.  1.  1.  0.  1.  0.  1.  1.  0.  1.  1.  1.  0.  1.  1.  1.  1.  0.
  0.  1.  1.  1.  0.  1.  1.  0.  1.  1.  0.  1.  1.  1.]
0.00674330566615
[ 1.  1.  1.  0.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.
  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  1.  0.  1.  1.  1.
  0.  1.  1.  1.  1.  1.  1.  0.  1.  1.  0.  1.  1.  1.]
0.00674330566615
[ 1.  1.  0.  1.  1.  1.  1.  0.  1.  1.  1.  1.  1.  1.  0.  1.  0.  1.
  1.  1.  1.  1.  1.  1.  1.  1.  1.  0.  1.  1.  1.  1.  1.  1.  1.  1.
  1.  1.  0.  1.  0.  1.  0.  1.  1.  1.  1.  1.  1.  0.]

, ,

  • n,

  • m m < n

  • ! , , .

m () . , m - 1 , . m < n, .

, , 10000 . , 20!= 2432902008176640000, , . 20 , , 19/10000, , . , .

+2

Source: https://habr.com/ru/post/1654666/


All Articles