Here's the recursive solution I came up with.
Imagine that we delete all the vertices except two (it does not matter which two).
, , a b. , a b , a b, - b a. .
, ( ). . i) , - . ii) , - , .
1.
, c (, a b). , a b . ? a , b, c, c . , - , c. , c c. , a c .
: =, .
, , ( , z) , , , (, x y), x!= y, z, x = y z. , :
, x w, y . , w!= Z, z. , z, y w. x!= Y z. , - , z.
2
. , d (, a, b c ). , a c , , d. , , , , a c d . .
, , , . , case 1 case 2, .
, , EQ (n), . , n, EQ (n-1), .. ( z). case 1 case 2, , z . n = 2, .
, T (2) = O (1) T (n) = T (n - 1) + O (n ). , O (n ^ 2).