, , , , (order (n2)), , , .
, , , , n.
√n, , n p, n = p × q, p ≤ q, , p ≤ √n. , n √n.
, , " ".
, , . (https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
, .
public int primes(int n) {
boolean[] isPrime = new boolean[n];
for (int i = 2; i < n; i++) {
isPrime[i] = true;
}
for (int i = 2; i * i < n; i++) {
if (!isPrime[i]) continue;
for (int j = i * i; j < n; j += i) {
isPrime[j] = false;
}
}
int count = 0;
for (int i = 2; i < n; i++) {
if (isPrime[i]) count++;
}
int maxPrime = 1;
for(int i = 0; i < isPrime.count; i++){
if(isPrime[i]){
maxPrime = i;
}
return maxPrime;
}
}