Linear mixed model lsmeans error sequential tests

I have a question about doing post-hoc tests of linear mixed models:

I perform a linear mixed model lme4with 3 groups, 5 snakes per group, each group with a different ventilation rate ( Vent), measurements taken at different points in time ( Time), with a snake specified as a random effect ( ID)

The subset of data below:

subset1 <- structure(list(ID = structure(c(5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 
6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 
9L, 18L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 19L, 10L, 10L, 
10L, 10L, 10L, 20L, 20L, 20L, 20L, 20L, 4L, 4L, 4L, 4L, 4L, 11L, 
11L, 11L, 11L, 11L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 12L, 
13L, 14L, 15L, 16L, 17L, 17L, 17L, 17L, 17L), .Label = c("", 
"1_1_2", "10", "10_1_1", "13_1_4", "14_2_4", "15_3_4", "16_1_4", 
"17_2_4", "2_2_1", "5", "5_2_2", "5_2_3", "5_2_4", "5_2_5", "5_2_6", 
"7_1_2", "8", "9", "9_3_1"), class = "factor"), Vent = c(30L, 
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 125L, 
125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 
125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 125L, 
125L, 125L, 250L, 250L, 250L, 250L, 250L, 250L, 250L, 250L, 250L, 
250L, 250L, 250L, 250L, 250L, 250L, 250L, 250L, 250L, 250L, 250L, 
250L, 250L, 250L, 250L, 250L), Time = c(60L, 80L, 180L, 720L, 
1440L, 60L, 80L, 180L, 720L, 1440L, 60L, 80L, 180L, 720L, 1440L, 
60L, 80L, 180L, 720L, 1440L, 60L, 80L, 180L, 720L, 1440L, 60L, 
80L, 180L, 720L, 1440L, 60L, 80L, 180L, 720L, 1440L, 60L, 80L, 
180L, 720L, 1440L, 60L, 80L, 180L, 720L, 1440L, 60L, 80L, 180L, 
720L, 1440L, 60L, 80L, 180L, 720L, 1440L, 60L, 80L, 180L, 720L, 
1440L, 60L, 80L, 180L, 720L, 1440L, 60L, 80L, 180L, 720L, 1440L, 
60L, 80L, 180L, 720L, 1440L), corr.pO2 = c(224.1388673, 233.9456874, 
239.1553778, 107.2373336, 76.71835625, 164.6293748, 243.8501858, 
234.8205544, 71.74240501, 62.23789874, 69.69478654, 62.23789874, 
152.1142885, 79.61325688, 63.33285001, 240.8713061, 231.304842, 
222.7743953, 95.7912966, 64.41744793, 241.7255035, 238.2936023, 
138.1188987, 43.00663696, 50.64392111, 265.4973967, 274.0599252, 
285.0144919, 83.37647392, NA, 292.3660214, 281.6533627, 275.9747984, 
63.33285001, 56.59660394, 254.2521631, 222.3180596, 208.736288, 
88.83223104, 114.1782867, 208.255285, 232.1878564, 193.3861802, 
72.75355024, 60.01517133, 209.6956308, 245.9596884, 200.4342522, 
75.73874562, 67.61194011, 240.0146049, 261.1278627, 166.9318704, 
74.75152919, 73.75652657, 270.9724687, 251.7882317, 245.9596884, 
147.1396383, 50.64392111, 294.179467, 296.3431178, 284.6426934, 
73.75652657, 75.73874562, 233.0681297, 234.3834557, 143.3247511, 
73.75652657, 66.55672391, 245.9596884, 249.3041163, 223.6847954, 
92.35383362, 78.65544784)), .Names = c("ID", "Vent", "Time", 
"corr.pO2"), row.names = c(NA, 75L), class = "data.frame")

code:

attach(subset1)

require(lme4)

with.vent = lmer(corr.pO2 ~ Vent * Time + (1|ID),REML = FALSE, data = subset1)

with.vent.no.int = lmer(corr.pO2 ~ Vent + Time + (1|ID),REML = FALSE, data = subset1)

anova(with.vent, with.vent.no.int)
#no significant interaction

Retraction Test:

without.vent = lmer(corr.pO2 ~ Time + (1|ID), REML = FALSE, data = subset1)

Compare with ventilation:

anova(with.vent.no.int, without.vent)
#no significant effect of ventilation treatment p=0.09199

Time effect test:

without.time = lmer(corr.pO2 ~ Vent + (1|ID), data = subset1)

anova(with.vent.no.int, without.time)
# highly significant effect of time on pO2 < 2.2e-16 *** 

So try post hoc test:

require(lsmeans)
lsmeans(with.vent.no.int, pairwise ~ Time, adjust = "tukey", data = subset1)

Here I get the error message:

Error in solve.default(L %*% V0 %*% t(L), L) : 
  Lapack routine dgesv: system is exactly singular: U[1,1] = 0

I can run paired tests with a fix using:

pairwise.t.test(corr.pO2, Time, p.adj = "BH", paired = T)

, , ( ), . lsmeans()?

, , . ANOVA, , . , , , , .

+4
2

: , Vent Time . lsmeans . ( , , , ANOVA...) :

subset1 <- transform(subset1,Vent=factor(Vent), Time=factor(Time))
require(lme4)
with.vent = lmer(corr.pO2 ~ Vent * Time + (1|ID),
       REML = FALSE, data = subset1)
drop1(with.vent,test="Chisq")  ## test interaction
with.vent.no.int = update(with.vent, . ~ . - Vent:Time)
drop1(with.vent.no.int,test="Chisq")  ## test main effects
require(lsmeans)
lsmeans(with.vent.no.int, pairwise ~ Time)

:

$contrasts
 contrast    estimate       SE    df t.ratio p.value
 60 - 80     -6.99222 12.76886 63.45  -0.548  0.9819
 60 - 180    14.74281 12.76886 63.45   1.155  0.7768
 60 - 720   147.27139 12.76886 63.45  11.534  <.0001
...

, . , lsmeans, , ( ) .

+4

lsmeans (, 1 2016 ) ​​:

> lsmeans(with.vent.no.int, pairwise ~ Vent)

$lsmeans
     Vent   lsmean       SE    df lower.CL upper.CL
 135.1351 167.4871 6.859275 18.63 153.1111  181.863

Confidence level used: 0.95 

$contrasts


Warning message:
In contrast.ref.grid(result, method = contr, by, ...) :
  No contrasts were generated! Perhaps only one lsmean is involved.
  This can happen, for example, when your predictors are not factors.

ref.grid , :

> ref.grid(with.vent.no.int)
'ref.grid' object with variables:
    Vent = 135.14
    Time = 483.24

Vent Time , . , ; :

> repaired = lmer(corr.pO2 ~ factor(Vent) + factor(Time) + (1|ID), 
                  REML = FALSE, data = subset1)
> ref.grid(repaired)
'ref.grid' object with variables:
    Vent =  30, 125, 250
    Time =   60,   80,  180,  720, 1440

> lsmeans(repaired, pairwise ~ Vent)
$lsmeans
 Vent   lsmean       SE    df lower.CL upper.CL
   30 146.0967 12.19373 18.16 120.4952 171.6981
  125 177.0917 12.29417 18.66 151.3274 202.8559
  250 173.2568 11.12879 26.72 150.4111 196.1024

Results are averaged over the levels of: Time 
Confidence level used: 0.95 

$contrasts
 contrast    estimate       SE    df t.ratio p.value
 30 - 125  -30.994975 17.31570 18.41  -1.790  0.2005
 30 - 250  -27.160077 16.50870 21.52  -1.645  0.2490
 125 - 250   3.834898 16.58302 21.81   0.231  0.9710

Results are averaged over the levels of: Time 
P value adjustment: tukey method for comparing a family of 3 estimates 
+3

Source: https://habr.com/ru/post/1623255/


All Articles