I implement partial derivatives of the Horn and Schunk paper equations for optical flow. However, even for relatively small images (320x568), it takes quite a long time to complete (~ 30-40 seconds). I assume this is due to loop iterations of 320 x 568 = 181760, but I cannot find a more efficient way to do this (except for the MEX file).
Is there a way to turn this into a more efficient MATLAB operation (possibly a convolution)? I can understand how to do this as a convolution for It, but not Ixand Iy. I also considered matrix shift, but this only works for Itas far as I can understand.
Does anyone else run into this problem and find a solution?
My code is below:
function [Ix, Iy, It] = getFlowParams(img1, img2)
% Make sure image dimensions match up
assert(size(img1, 1) == size(img2, 1) && size(img1, 2) == size(img2, 2), ...
'Images must be the same size');
assert(size(img1, 3) == 1, 'Images must be grayscale');
% Dimensions of original image
[rows, cols] = size(img1);
Ix = zeros(numel(img1), 1);
Iy = zeros(numel(img1), 1);
It = zeros(numel(img1), 1);
% Pad images to handle edge cases
img1 = padarray(img1, [1,1], 'post');
img2 = padarray(img2, [1,1], 'post');
% Concatenate i-th image with i-th + 1 image
imgs = cat(3, img1, img2);
% Calculate energy for each pixel
for i = 1 : rows
for j = 1 : cols
cube = imgs(i:i+1, j:j+1, :);
Ix(sub2ind([rows, cols], i, j)) = mean(mean(cube(:, 2, :) - cube(:, 1, :)));
Iy(sub2ind([rows, cols], i, j)) = mean(mean(cube(2, :, :) - cube(1, :, :)));
It(sub2ind([rows, cols], i, j)) = mean(mean(cube(:, :, 2) - cube(:, :, 1)));
end
end