let:
- A (xA, yA, zA) and B (xB, yB, zB) - two different points on the line
- C (xC, yC, zC) is the center of the sphere
- r is the radius of the sphere
Cartesian equation of the sphere:
- (-Xc) ² + (-) ² + (-ZC) ² = r²
( d):
- x = xA + d * (xB-xA)
- y = yA + d * (yB-yA)
- z = zA + d * (zB-zA)
:
- (xA + d (xB-xA) - xC) ² + (yA + d (yB-yA) - yC) ² + (zA + d (zB-zA) - zC) ² = r²
d, :
:
- a = (xB-xA) ² + (yB-yA) ² + (zB-zA) ²
- b = 2 * ((xB-xA) (xA-xC) + (yB-yA) (yA-yC) + (zB-zA) (zA-zC))
- c = (xA-xC) ² + (yA-yC) ² + (zA-zC) ²-r²
Delta < 0,
Delta == 0, ( )
d = -b/2a ( )
Delta > 0,
d1 = (- b-sqrt (Delta))/(2a) d2 = (- b + sqrt (Delta))/(2a) ( )
, :
- a, b, c, Delta,
- , d (d1 d2)
- ,