There should be an easy way to do this, but I could not find an elegant solution for SO or figure it out myself.
I am trying to count the number of duplicate values based on a set of columns in a DataFrame.
Example:
print df
Month LSOA code Longitude Latitude Crime type
0 2015-01 E01000916 -0.106453 51.518207 Bicycle theft
1 2015-01 E01000914 -0.111497 51.518226 Burglary
2 2015-01 E01000914 -0.111497 51.518226 Burglary
3 2015-01 E01000914 -0.111497 51.518226 Other theft
4 2015-01 E01000914 -0.113767 51.517372 Theft from the person
My workaround:
counts = dict()
for i, row in df.iterrows():
key = (
row['Longitude'],
row['Latitude'],
row['Crime type']
)
if counts.has_key(key):
counts[key] = counts[key] + 1
else:
counts[key] = 1
And I get the counts:
{(-0.11376700000000001, 51.517371999999995, 'Theft from the person'): 1,
(-0.111497, 51.518226, 'Burglary'): 2,
(-0.111497, 51.518226, 'Other theft'): 1,
(-0.10645299999999999, 51.518207000000004, 'Bicycle theft'): 1}
Besides the fact that this code could be improved (feel free to comment how), how can this be done using Pandas?
For those who are interested, I am working on a dataset from https://data.police.uk/
source
share