By virtue of math!
x1 <- c(3,7,13,21)
dat <- data.frame(x=seq_along(x1), y=x1)
predict(lm(y ~ poly(x, 2), data=dat), newdata=list(x=5:15))
When using sequential differences that change their sign, the structure of the output values ends by switching from decreasing to increasing:
x2 <- c(37,26,17,10)
dat <- data.frame(x=seq_along(x2), y=x2)
predict(lm(y ~ poly(x,2), data=dat), newdata=list(x=1:10))
-(11) -(9) -(7) -(5) -(3) -(1) -(-1) -(-3) -(-5)
-2 -2 -2 -2 -2 -2 -2 -2
As a function:
seqNext <- function(x,n) {
L <- length(x)
dat <- data.frame(x=seq_along(x), y=x)
unname(
predict(lm(y ~ poly(x, 2), data=dat), newdata=list(x=seq(L+1,L+n)))
)
}
seqNext(x1,5)
seqNext(x2,5)
It can also easily be expanded to circumstances where the template can be of norder of magnitude deep, for example:
x3 <- c(100, 75, 45, 5, -50)
diff(x3)
diff(diff(x3))
diff(diff(diff(x3)))
seqNext <- function(x,n,degree=2) {
L <- length(x)
dat <- data.frame(x=seq_along(x), y=x)
unname(
predict(lm(y ~ poly(x, degree), data=dat), newdata=list(x=seq(L+1,L+n)))
)
}
seqNext(x3,n=5,deg=3)