Here's one hacky solution for an array J x 2using linear indexing-
%
N = size(A,1);
%
idx = 1:2*N+1:(N-1)*(2*N+1)+1;
%
out = zeros(N,N*2);
%
out([idx(:) idx(:)+N]) = A
There is only one function call (neglecting size, since it should be minimal) overhead zeros, and even this can be removed with this undocumented zeros initialization trick-
out(N,N*2) = 0; %
Run Example -
A =
1 2
3 4
5 6
7 8
out =
1 2 0 0 0 0 0 0
0 0 3 4 0 0 0 0
0 0 0 0 5 6 0 0
0 0 0 0 0 0 7 8
Here's a comparative analysis of published solutions.
Benchmarking code
%//Set up some random data
J = 7000; A = rand(J,2);
%// Warm up tic/toc
for k = 1:100000
tic(); elapsed = toc();
end
disp('---------------------------------- With @mikkola solution')
tic
temp = mat2cell(A, ones(J,1), 2);
B = blkdiag(temp{:});
toc, clear B temp
disp('---------------------------------- With @Jeff Irwin solution')
tic
m = size(A, 1);
n = size(A, 2);
B = zeros(m, m * n);
for k = 1: n
B(:, k: n: m * n) = diag(A(:, k));
end
toc, clear B k m n
disp('---------------------------------- With Hacky1 solution')
tic
N = size(A,1);
idx = 1:2*N+1:(N-1)*(2*N+1)+1;
out = zeros(N,N*2);
out([idx(:) idx(:)+N]) = A;
toc, clear out idx N
disp('---------------------------------- With Hacky2 solution')
tic
N = size(A,1);
idx = 1:2*N+1:(N-1)*(2*N+1)+1;
out(N,N*2) = 0;
out([idx(:) idx(:)+N]) = A;
toc, clear out idx N
Runtimes
---------------------------------- With @mikkola solution
Elapsed time is 0.546584 seconds.
---------------------------------- With @Jeff Irwin solution
Elapsed time is 1.330666 seconds.
---------------------------------- With Hacky1 solution
Elapsed time is 0.455735 seconds.
---------------------------------- With Hacky2 solution
Elapsed time is 0.364227 seconds.