Jobs are not served through Airflow, which uses celery with RabbitMQ

Below is im configuration using

[core]
# The home folder for airflow, default is ~/airflow
airflow_home = /root/airflow

# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
dags_folder = /root/airflow/dags

# The folder where airflow should store its log files. This location
base_log_folder = /root/airflow/logs

# An S3 location can be provided for log backups
# For S3, use the full URL to the base folder (starting with "s3://...")
s3_log_folder = None

# The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor
#executor = SequentialExecutor
#executor = LocalExecutor
executor = CeleryExecutor

# The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
#sql_alchemy_conn = sqlite:////home/centos/airflow/airflow.db
sql_alchemy_conn = mysql://username:password@XXX.XXX.XXX.XXX:3306/airflow_prod

[celery]
# This section only applies if you are using the CeleryExecutor in
# [core] section above


# The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor

# The concurrency that will be used when starting workers with the
# "airflow worker" command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
celeryd_concurrency = 16

# When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793

# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
broker_url = pyamqp://guest:guest@XXX.XXX.XXX.XXX:5672/


# Another key Celery setting
celery_result_backend = db+mysql://username:password@XXX.XXX.XXX.XXX:3306/airflow_prod

# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the port that Celery Flower runs on
flower_port = 5556

# Default queue that tasks get assigned to and that worker listen on.
default_queue = = default

But tasks do not start .. the scheduler shows that he checks the status as below

[2017-05-11 05:09:13,070] {models.py:2274} INFO - Checking state for <DagRun tutorial @ 2015-06-13 00:00:00: scheduled__2015-06-13T00:00:00, externally triggered: False>
[2017-05-11 05:09:13,072] {models.py:2274} INFO - Checking state for <DagRun tutorial @ 2015-06-14 00:00:00: scheduled__2015-06-14T00:00:00, externally triggered: False>
[2017-05-11 05:09:13,074] {models.py:2274} INFO - Checking state for <DagRun tutorial @ 2015-06-15 00:00:00: scheduled__2015-06-15T00:00:00, externally triggered: False>
[2017-05-11 05:09:13,076] {models.py:2274} INFO - Checking state for <DagRun tutorial @ 2015-06-16 00:00:00: scheduled__2015-06-16T00:00:00, externally triggered: False>
[2017-05-11 05:09:13,078] {models.py:2274} INFO - Checking state for <DagRun tutorial @ 2017-05-10 04:46:29: manual__2017-05-10T04:46:28.756946, externally triggered: True>
[2017-05-11 05:09:13,080] {models.py:2274} INFO - Checking state for <DagRun tutorial @ 2017-05-10 05:08:20: manual__2017-05-10T05:08:20.252573, externally triggered: True>

Airflow user interface works. Cerlery Flower does not show workers. My tasks are not completed.

Below is the sequence that I am following to get started.

Air flow planner

airflow web server -p 8080

Air flow worker

Is there something I don't see?

+3
source share
1 answer

, Airflow rabbitmq, . , - .

URL- . URL- airflow.cfg , . , , pyampq, .

rabbitmqctl. , - , Airflow. :

# Configure RabbitMQ: create user and grant privileges
rabbitmqctl add_user rabbitmq_user_name rabbitmq_password
rabbitmqctl add_vhost rabbitmq_virtual_host_name
rabbitmqctl set_user_tags rabbitmq_user_name rabbitmq_tag_name
rabbitmqctl set_permissions -p rabbitmq_virtual_host_name rabbitmq_user_name ".*" ".*" ".*"

, Celery, . Celery 4.X.X Airflow. , .

pip uninstall celery
pip install celery==3.1.7
+1

Source: https://habr.com/ru/post/1614365/


All Articles