Creating a search device Hardy-Ramanujan nth number

I tried to make an algorithm to find the nth number of Hardy-Ramanujan (a number that can be expressed in more than one way as the sum of two cubes). In addition, I basically check each cube for another to make sure that it is equal to the sum of the other two cubes. Any tips on how to make this more efficient? I'm a bit stumped.

public static long nthHardyNumber(int n) {

    PriorityQueue<Long> sums = new PriorityQueue<Long>();
    PriorityQueue<Long> hardyNums = new PriorityQueue<Long>();
    int limit = 12;
    long lastNum = 0;

    //Get the first hardy number
    for(int i=1;i<=12;i++){
        for(int j = i; j <=12;j++){
            long temp = i*i*i + j*j*j;
            if(sums.contains(temp)){
                if(!hardyNums.contains(temp))
                    hardyNums.offer(temp);
                if(temp > lastNum)
                    lastNum = temp;
            }
            else
                sums.offer(temp);
        }
    }
    limit++;

    //Find n hardy numbers
    while(hardyNums.size()<n){
        for(int i = 1; i <= limit; i++){
            long temp = i*i*i + limit*limit*limit;
            if(sums.contains(temp)){
                if(!hardyNums.contains(temp))
                    hardyNums.offer(temp);
                if(temp > lastNum)
                    lastNum = temp;
            }
            else
                sums.offer(temp);
        }
        limit++;
    }

    //Check to see if there are hardy numbers less than the biggest you found
    int prevLim = limit;
    limit = (int) Math.ceil(Math.cbrt(lastNum));
    for(int i = 1; i <= prevLim;i++){
        for(int j = prevLim; j <= limit; j++){
            long temp = i*i*i + j*j*j;
            if(sums.contains(temp)){
                if(!hardyNums.contains(temp))
                    hardyNums.offer(temp);
                if(temp > lastNum)
                    lastNum = temp;
            }
            else
                sums.offer(temp);
        }
    }

    //Get the nth number from the pq
    long temp = 0;
    int count = 0;
    while(count<n){
        temp = hardyNums.poll();
        count++;
    }
    return temp;

}
+4
source share
2 answers

These numbers are sometimes called taxicab numbers:

. . , . , 1729, . , 1729 - , . , 10 3 + 9 3 = 12 3 + 1 3= 1729.

x y, , 0 n, x y. x = 0 y n, : x 3 + y 3 n, x, x 3 + y 3 > n, y x 3 + y 3= n, :

function taxicab(n)
    x, y = 0, cbrt(n)
    while x <= y:
        s = x*x*x + y*y*y
        if s < n then x = x + 1
        else if n < s then y = y - 1
        else output x, y
             x, y = x + 1, y - 1

100000:

1729: ((1 12) (9 10))
4104: ((2 16) (9 15))
13832: ((2 24) (18 20))
20683: ((10 27) (19 24))
32832: ((4 32) (18 30))
39312: ((2 34) (15 33))
40033: ((9 34) (16 33))
46683: ((3 36) (27 30))
64232: ((17 39) (26 36))
65728: ((12 40) (31 33))

.

+5

, (i, j), (j, i).
, @user448810, , j.

Java :

import java.util.*;

public class efficientRamanujan{

public static void main(String[] args) {
    efficientRamanujan s=new efficientRamanujan();
        Scanner scan=new Scanner(System.in);
        int n=scan.nextInt();
        int i=0,k=1;
        while(i<n){
           if(s.efficientRamanujan(k))
        {
            i=i+1;
            System.out.println(i+" th ramanujan number is "+k);
        }
        k++;
    }
    scan.close();
 }




public boolean efficientRamanujan(int n){
    int count=0;

    int x = 1;
    int y = (int) Math.cbrt(n);

    while (x<y){

        int sum = (int) Math.pow(x,3) + (int) Math.pow(y,3);
        if(sum<n){
           x = x+1;
        }else if(sum>n){
           y = y-1;
        }else{
           count++;
           x = x+1;
           y = y-1;
    }

    if(count>=2){
        return true;
    }
}

return false;
}

}
0

Source: https://habr.com/ru/post/1609712/


All Articles