Miller-Rabin test: impossible result

I tried to implement the Miller-Rabin primitiveness test in Java and withstand its computational time using the class native primality test BigInteger. Given that I'm here, you probably guessed that my code was not working. The problem is that the error I get is that Lady Math says that this is not possible. I would like to know what I am doing wrong.

The idea of ​​the Miller-Rabin primitive test, without much math, is that all primes satisfy decency. If this relevance is not satisfied, then the number is composite; however, if satisfaction is satisfied, the number may be simple, or it may belong to a subset of a composite number called pseudo-crimes. What definitely cannot be is a prime number that will be recognized as compound by the test. This is exactly what ever happens when running my code.

I was looking for my code for math errors, and I think there are none. I tried to find Java errors and I did not find them. Obviously, there is something (or a lot of something) that I do not see, so I would like to ask for help.


The following is a mainstatic class created only to host the implementation of the Miller-Rabin test, which is presented after main. This is not a probabilistic test, but deterministic: the method searches for all possible witnesses and, if it is found, returns false(that is, not easy); otherwise it returns true.

    public static void main(String[] args) {
        long start;
        Random random = new Random();
        int N = Integer.parseInt("10");
        BigInteger a,b,c,d;

        long stopMR, stopNative;
        boolean answerMR, answerNative;

        for(int i=0 ; i<6 ; i++, N*=3)
            {
            a = new BigInteger(N, random);
            System.out.printf("\tTEST %d\n\nThe number to be checked is: \n\t %s\n"     + 
    //              "Written in 2-base:  \n\t %s\n"                     +
                    "Number of bits of a: %d \n", i,
                    a.toString(), 
    //              a.toString(2), 
                    a.toString(2).length());

            start = System.nanoTime();
            answerMR = primalityTest_MillerRabin(a);
            stopMR = System.nanoTime();
            stopMR -= start;

            start = System.nanoTime();
            answerNative = a.isProbablePrime(40);
            stopNative = System.nanoTime();
            stopNative -= start;

            System.out.printf("The test of Miller-Rabin said that the number %s.\n"
                    + "The native test said that the number %s.\n"
                    + "The time of MR is %d.\n"
                    + "The time of the native is %d.\n"
                    + "The difference Time(MR)-Time(native) is %d.\n",
                    answerMR        ? "is prime" : "isn't prime"   ,
                    answerNative    ? "is prime" : "isn't prime"   ,
                    stopMR, stopNative, stopMR - stopNative
                    );

            a = BigInteger.probablePrime(N, random);
            System.out.printf("\tTEST %d\n\nThe number to be checked is: \n\t %s\n"     + 
    //              "Written in 2-base:  \n\t %s\n"                     +
                    "Number of bits of a: %d \n", i,
                    a.toString(), 
    //              a.toString(2), 
                    a.toString(2).length());

            start = System.nanoTime();
            answerMR = primalityTest_MillerRabin(a);
            stopMR = System.nanoTime();
            stopMR -= start;

            start = System.nanoTime();
            answerNative = a.isProbablePrime(40);
            stopNative = System.nanoTime();
            stopNative -= start;

            System.out.printf("The test of Miller-Rabin said that the number %s.\n"
                    + "The native test said that the number %s.\n"
                    + "The time of MR is %d.\n"
                    + "The time of the native is %d.\n"
                    + "The difference Time(MR)-Time(native) is %d.\n=====\n",
                    answerMR        ? "is prime" : "isn't prime"   ,
                    answerNative    ? "is prime" : "isn't prime"   ,
                    stopMR, stopNative, stopMR - stopNative
                    );
            }

    }

    /** Tests {@code n} for primality using the <i>Miller-Rabin algorithm</i>.
     * 
     * <p><br> For {@code n} minor than <b>3,825,123,056,546,413,051</b> (i.e. roughtly four millions of millions of millions,
     *  i.e. 4·10<sup>18</sup>) the test is deterministic and have time complexity of Θ<font size=+1>(</font>10·modPow(·,n)<font size=+1>)</font>.
     * <br> For {@code n} greater than <b>3,825,123,056,546,413,051</b> the test is deterministic and have time complexity of 
     * Θ<font size=+1>(</font>2·log<sub>2</sub><sup>2</sup>(n)·modPow(·,n)<font size=+1>)</font>.
     * 
     * @param n
     * @return
     */
    public static boolean primalityTest_MillerRabin(BigInteger n){
        // If n is divided by 2 or is less than 2, then n is not prime.
        if( n.intValue()%2== 0       ||       n.equals(TWO) )
            {
            System.out.printf("The number is even.\n");
            return false;
            }

        // n = d*2^s +1
        BigInteger pMinus1 = n.subtract(ONE);

        int s = 0;
        while (pMinus1.mod(TWO).equals(ZERO)) 
            {
            s++;
            pMinus1 = pMinus1.divide(TWO);
            }
        BigInteger d = pMinus1;

        System.out.printf("%s is %s*2^%d+1.\n", n.toString(), d.toString(),s);

        // Old code:
        // pMinus1.divide(BigInteger.valueOf(2L << r - 1));


        // For some n is known what witness one has to choose in order to verify is n is composite.
        // While the code for EVERY known limit is shown, only those not-redundant is not comment.

        if(n.compareTo(LIMIT_2047)<0)
            return  ! isTWOWitnessOfCompositenessOfN_MR(                     n, d, s)           ;
        if(n.compareTo(LIMIT_9080191)<0)
            return  ! (
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(31) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(73) , n, d, s)          );
        if(n.compareTo(LIMIT_4759123141)<0)
            return  ! (
                    isTWOWitnessOfCompositenessOfN_MR(                       n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(7) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(61) , n, d, s)          );


        if(n.compareTo(LIMIT_1122004669633)<0)
            return  ! (
                    isTWOWitnessOfCompositenessOfN_MR(                        n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(13) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(23) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(1662803) , n, d, s) );
        if(n.compareTo(LIMIT_2152302898747)<0)
            return  ! (
                    isTWOWitnessOfCompositenessOfN_MR(                       n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(3) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(5) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(7) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(11) , n, d, s)          );
        if(n.compareTo(LIMIT_3474749660383)<0)
            return  ! (
                    isTWOWitnessOfCompositenessOfN_MR(                       n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(3) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(5) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(7) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(11) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(13) , n, d, s)          );
        if(n.compareTo(LIMIT_341550071728321)<0)
            return  ! (
                    isTWOWitnessOfCompositenessOfN_MR(                       n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(3) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(5) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(7) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(11) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(13) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(17) , n, d, s)          );
        if(n.compareTo(LIMIT_3825123056546413051)<0)
            return  ! (
                    isTWOWitnessOfCompositenessOfN_MR(                       n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(3) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(5) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(7) , n, d, s)           ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(11) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(13) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(17) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(19) , n, d, s)          ||
                    isAWitnessOfCompositenessOfN_MR( BigInteger.valueOf(23) , n, d, s)          );


        // ...otherwise the program does an exaustive search for witness
        System.out.printf("The Miller-Rabin Test has no shortcuts.\n");


        boolean witnessFound = false;
        int logn = (int) log(n,2) +1;
        BigInteger limit = (    n.subtract(ONE) ).min(  BigInteger.valueOf(2*logn*logn)   );

        for(BigInteger a = TWO ; witnessFound && a.compareTo(limit)<=0 ; a.add(ONE))
                witnessFound = isAWitnessOfCompositenessOfN_MR( a , n, d, s);

        return !witnessFound;
    }

    /** Return {@code true} if and only if {@code a} is a witness for the compositeness of {@code n}, i.e. if and only if: 
     * <ol> n = d·2<sup>s</sup> + 1                         <br>
     *      gcd(a,n) = 1    (i.e. a doesn't divide n)       <br>
     *      _<br>
     *      a<sup>d</sup> ≠ 1 (mod n)                       <br>
     *      a<sup>(d·2^r)</sup> ≠ -1 (mod n)        for all rϵ[0,s)         </ol>
     * 
     * If the method returns {@code true} then {@code n} is definitely a composite number. However if the method returns {@code false} it 
     * still may be possible for {@code n} to be composite.
     * 
     * <p>If this method recognize {@code a} as a witness for the compositeness of {@code n}
     * 
     * @param a
     * @param n
     * @param d
     * @param s
     * @return
     */
    public static boolean isAWitnessOfCompositenessOfN_MR(BigInteger a, BigInteger n, BigInteger d, int s){
        System.out.printf("\t Verifying if %s is a witness of the compositness of %s.\n", a.toString(), n.toString());
        if( a.gcd(n) == ONE )
            {
            BigInteger dMultiplyTwoPowR = a.modPow(d, n),
                        nMinusOne = NEGATIVE_ONE.mod(n);
            boolean answer = dMultiplyTwoPowR != ONE;
            for(int r=1 ; answer && r<s ; r++)
                {
                System.out.printf("\t\t Testing r=%d.\n", r);
                    answer = answer && 
                            dMultiplyTwoPowR.modPow(TWO, n) != nMinusOne;
                }

            System.out.printf("\t The number %s %s a witness of the compositness of %s.\n", a.toString(), answer ? "is" : "isn't", n.toString());
            return answer;
            }
        else 
            {
            System.out.printf("\t %s divides %s.\n", a.toString(), n.toString());
            return true;
            }
    }

        /** Returns {@code isAWitnessOfCompositenessOfN_MR(TWO, n, d, s)}. 
         * 
         * <p><u><b>Warning:</b></u> This method avoids to control if gcd(2, {@code n})=1.
             * 
             * @param n
             * @param d
         * @param s
         * @return
         */
    public static boolean isTWOWitnessOfCompositenessOfN_MR( BigInteger n, BigInteger d, int s){
        System.out.printf("\t Verifying if 2 is a witness of the compositness of %s.\n", n.toString());
        BigInteger dMultiplyTwoPowR = TWO.modPow(d, n),
                nMinusOne = NEGATIVE_ONE.mod(n);
        boolean answer = dMultiplyTwoPowR != ONE;
        for(int r=1 ; answer && r<s ; r++)
             {
            System.out.printf("\t\t Testing r=%d.\n", r);
            answer = answer && 
                    dMultiplyTwoPowR.modPow(TWO, n) != nMinusOne;
             }

        System.out.printf("\t The number 2 %s a witness of the compositness of %s.\n", answer ? "is" : "isn't", n.toString());
        return answer;
    }

Edit: The following lines are a method log(x,base).

    /** Returns the logarithm of a number {@code x} in the selected {@code base}.
     * <p>
     * <b>Time Complexity:</b> Θ(1).                                <br>
     * <b>Space Complexity:</b> Θ(log<sub>10</sub>(x)).                                                         <br>
     * 
     * @param x
     * @param base
     * @return
     */
    public static double log(BigInteger x, float base){
        String support = x.toString();
        int n = support.length();
        double log10 = n + Float.parseFloat("0."+support);
        if(base==10)    return log10;
        else            return log10 / Math.log10(base);

    }
+4
source share
1 answer

You have several expressions comparing BigInteger objects using == and! =. This must be replaced by equal calls, negating the result for! =.

Also, I think there is a copy-paste error in isAWitnessOfCompositenessOfN_MR:

! dMultiplyTwoPowR.modPow(TWO, n).equals( nMinusOne );

, TWO .

. :

public static double log(BigInteger x, base b){
    String support = x.toString();
    int n = support.length();
    double log10 = n + Math.log10( Double.parseDouble("0."+support) );
    return log10/Math.log10(b);
}

, , .

0

Source: https://habr.com/ru/post/1605987/


All Articles