How to perform cubic spline interpolation in python?

I have two lists to describe the function y (x):

x = [0,1,2,3,4,5]
y = [12,14,22,39,58,77]

I would like to interpolate the cubic spline so that for some value of u in the region x, for example

u = 1.25

I can find you (and).

I found this in SciPy, but I'm not sure how to use it.

+10
source share
4 answers

Short answer:

from scipy import interpolate

def f(x):
    x_points = [ 0, 1, 2, 3, 4, 5]
    y_points = [12,14,22,39,58,77]

    tck = interpolate.splrep(x_points, y_points)
    return interpolate.splev(x, tck)

print(f(1.25))

Long answer:

scipy divides the steps involved in spline interpolation into two operations, most likely for computational efficiency.

  1. Coefficients describing the spline curve are calculated using splrep (). splrep returns an array of tuples containing coefficients.

  2. splev() x ( 1.25). x . f([1.0, 1.25, 1.5]) 1, 1.25 1,5 .

, , , , , , .

+19

, scipy :

import numpy as np
from math import sqrt

def cubic_interp1d(x0, x, y):
    """
    Interpolate a 1-D function using cubic splines.
      x0 : a float or an 1d-array
      x : (N,) array_like
          A 1-D array of real/complex values.
      y : (N,) array_like
          A 1-D array of real values. The length of y along the
          interpolation axis must be equal to the length of x.

    Implement a trick to generate at first step the cholesky matrice L of
    the tridiagonal matrice A (thus L is a bidiagonal matrice that
    can be solved in two distinct loops).

    additional ref: www.math.uh.edu/~jingqiu/math4364/spline.pdf 
    """
    x = np.asfarray(x)
    y = np.asfarray(y)

    # remove non finite values
    # indexes = np.isfinite(x)
    # x = x[indexes]
    # y = y[indexes]

    # check if sorted
    if np.any(np.diff(x) < 0):
        indexes = np.argsort(x)
        x = x[indexes]
        y = y[indexes]

    size = len(x)

    xdiff = np.diff(x)
    ydiff = np.diff(y)

    # allocate buffer matrices
    Li = np.empty(size)
    Li_1 = np.empty(size-1)
    z = np.empty(size)

    # fill diagonals Li and Li-1 and solve [L][y] = [B]
    Li[0] = sqrt(2*xdiff[0])
    Li_1[0] = 0.0
    B0 = 0.0 # natural boundary
    z[0] = B0 / Li[0]

    for i in range(1, size-1, 1):
        Li_1[i] = xdiff[i-1] / Li[i-1]
        Li[i] = sqrt(2*(xdiff[i-1]+xdiff[i]) - Li_1[i-1] * Li_1[i-1])
        Bi = 6*(ydiff[i]/xdiff[i] - ydiff[i-1]/xdiff[i-1])
        z[i] = (Bi - Li_1[i-1]*z[i-1])/Li[i]

    i = size - 1
    Li_1[i-1] = xdiff[-1] / Li[i-1]
    Li[i] = sqrt(2*xdiff[-1] - Li_1[i-1] * Li_1[i-1])
    Bi = 0.0 # natural boundary
    z[i] = (Bi - Li_1[i-1]*z[i-1])/Li[i]

    # solve [L.T][x] = [y]
    i = size-1
    z[i] = z[i] / Li[i]
    for i in range(size-2, -1, -1):
        z[i] = (z[i] - Li_1[i-1]*z[i+1])/Li[i]

    # find index
    index = x.searchsorted(x0)
    np.clip(index, 1, size-1, index)

    xi1, xi0 = x[index], x[index-1]
    yi1, yi0 = y[index], y[index-1]
    zi1, zi0 = z[index], z[index-1]
    hi1 = xi1 - xi0

    # calculate cubic
    f0 = zi0/(6*hi1)*(xi1-x0)**3 + \
         zi1/(6*hi1)*(x0-xi0)**3 + \
         (yi1/hi1 - zi1*hi1/6)*(x0-xi0) + \
         (yi0/hi1 - zi0*hi1/6)*(xi1-x0)
    return f0

if __name__ == '__main__':
    import matplotlib.pyplot as plt
    x = np.linspace(0, 10, 11)
    y = np.sin(x)
    plt.scatter(x, y)

    x_new = np.linspace(0, 10, 201)
    plt.plot(x_new, cubic_interp1d(x_new, x, y))

    plt.show()
+15

​​scipy >= 0.18.0, CubicSpline scipy.interpolate .

scipy , python:

#!/usr/bin/env python3
import scipy
scipy.version.version

scipy >= 0.18.0, :

#!/usr/bin/env python3

import numpy as np
from scipy.interpolate import CubicSpline

# calculate 5 natural cubic spline polynomials for 6 points
# (x,y) = (0,12) (1,14) (2,22) (3,39) (4,58) (5,77)
x = np.array([0, 1, 2, 3, 4, 5])
y = np.array([12,14,22,39,58,77])

# calculate natural cubic spline polynomials
cs = CubicSpline(x,y,bc_type='natural')

# show values of interpolation function at x=1.25
print('S(1.25) = ', cs(1.25))

## Aditional - find polynomial coefficients for different x regions

# if you want to print polynomial coefficients in form
# S0(0<=x<=1) = a0 + b0(x-x0) + c0(x-x0)^2 + d0(x-x0)^3
# S1(1< x<=2) = a1 + b1(x-x1) + c1(x-x1)^2 + d1(x-x1)^3
# ...
# S4(4< x<=5) = a4 + b4(x-x4) + c5(x-x4)^2 + d5(x-x4)^3
# x0 = 0; x1 = 1; x4 = 4; (start of x region interval)

# show values of a0, b0, c0, d0, a1, b1, c1, d1 ...
cs.c

# Polynomial coefficients for 0 <= x <= 1
a0 = cs.c.item(3,0)
b0 = cs.c.item(2,0)
c0 = cs.c.item(1,0)
d0 = cs.c.item(0,0)

# Polynomial coefficients for 1 < x <= 2
a1 = cs.c.item(3,1)
b1 = cs.c.item(2,1)
c1 = cs.c.item(1,1)
d1 = cs.c.item(0,1)

# ...

# Polynomial coefficients for 4 < x <= 5
a4 = cs.c.item(3,4)
b4 = cs.c.item(2,4)
c4 = cs.c.item(1,4)
d4 = cs.c.item(0,4)

# Print polynomial equations for different x regions
print('S0(0<=x<=1) = ', a0, ' + ', b0, '(x-0) + ', c0, '(x-0)^2  + ', d0, '(x-0)^3')
print('S1(1< x<=2) = ', a1, ' + ', b1, '(x-1) + ', c1, '(x-1)^2  + ', d1, '(x-1)^3')
print('...')
print('S5(4< x<=5) = ', a4, ' + ', b4, '(x-4) + ', c4, '(x-4)^2  + ', d4, '(x-4)^3')

# So we can calculate S(1.25) by using equation S1(1< x<=2)
print('S(1.25) = ', a1 + b1*0.25 + c1*(0.25**2) + d1*(0.25**3))

# Cubic spline interpolation calculus example
    #  https://www.youtube.com/watch?v=gT7F3TWihvk
+7
source

Minimum python3 code:

from scipy import interpolate

if __name__ == '__main__':
    x = [ 0, 1, 2, 3, 4, 5]
    y = [12,14,22,39,58,77]

    # tck : tuple (t,c,k) a tuple containing the vector of knots,
    # the B-spline coefficients, and the degree of the spline.
    tck = interpolate.splrep(x, y)

    print(interpolate.splev(1.25, tck)) # Prints 15.203125000000002
    print(interpolate.splev(...other_value_here..., tck))

Based on cwhy's comments and junior's answers

+1
source

Source: https://habr.com/ru/post/1598917/


All Articles