I am trying to implement the Vincenty inverse task as described in the wiki HERE
The problem is that lambda just doesn't fit. The value remains unchanged if I try to iterate over a sequence of formulas, and I really don't know why. Maybe I just stared at the obvious problem.
It should be noted that I am new to Python and still learning the language, so I'm not sure if it is abusing a language that might cause a problem, or if I have some errors in some of the calculations that I perform. I just can’t find the errors in the formulas.
Basically, I wrote the code in the format as close as possible to the wiki article, and the result is as follows:
import math
# Length of radius at equator of the ellipsoid
a = 6378137.0
# Flattening of the ellipsoid
f = 1/298.257223563
# Length of radius at the poles of the ellipsoid
b = (1 - f) * a
# Latitude points
la1, la2 = 10, 60
# Longitude points
lo1, lo2 = 5, 150
# For the inverse problem, we calculate U1, U2 and L.
# We set the initial value of lamb = L
u1 = math.atan( (1 - f) * math.tan(la1) )
u2 = math.atan( (1 - f) * math.tan(la2) )
L = (lo2 - lo1) * 0.0174532925
lamb = L
while True:
sinArc = math.sqrt( math.pow(math.cos(u2) * math.sin(lamb),2) + math.pow(math.cos(u1) * math.sin(u2) - math.sin(u1) * math.cos(u2) * math.cos(lamb),2) )
cosArc = math.sin(u1) * math.sin(u2) + math.cos(u1) * math.cos(u2) * math.cos(lamb)
arc = math.atan2(sinArc, cosArc)
sinAzimuth = ( math.cos(u1) * math.cos(u2) * math.sin(lamb) )
cosAzimuthSqr = 1 - math.pow(sinAzimuth, 2)
cosProduct = cosArc - ((2 * math.sin(u1) * math.sin(u2) )
C = (f
lamb = L + (1 - C) * f * sinAzimuth * ( arc + C * sinArc * ( cosProduct + C * cosArc * (-1 + 2 * math.pow(cosProduct, 2))))
print(lamb)
, , "" () . , .
?: -)
!